StudierendeLehrende

Adaptive Neuro-Fuzzy

Adaptive Neuro-Fuzzy (ANFIS) ist ein hybrides Modell, das die Vorteile von neuronalen Netzwerken und fuzzy Logik kombiniert, um komplexe Systeme zu modellieren und Vorhersagen zu treffen. Es nutzt die Fähigkeit von neuronalen Netzwerken, Muster in Daten zu erkennen, und integriert gleichzeitig die Unsicherheit und Vagheit, die durch fuzzy Logik beschrieben werden. ANFIS besteht aus einer fuzzy Regelbasis, die durch Lernalgorithmen angepasst wird, wodurch das System in der Lage ist, sich an neue Daten anzupassen. Die Hauptkomponenten von ANFIS sind:

  • Fuzzifizierung: Umwandlung von Eingabewerten in fuzzy Mengen.
  • Regelung: Anwendung von fuzzy Regeln zur Verarbeitung der Eingaben.
  • Defuzzifizierung: Umwandlung der fuzzy Ausgaben in präzise Werte.

Diese Technik wird häufig in Bereichen wie Datenanalyse, Mustererkennung und Systemsteuerung eingesetzt, da sie eine effektive Möglichkeit bietet, Unsicherheit und Komplexität zu handhaben.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Fama-French

Das Fama-French-Modell ist ein erweitertes Kapitalmarktmodell, das von den Ökonomen Eugene Fama und Kenneth French entwickelt wurde, um die Renditen von Aktien besser zu erklären. Es erweitert das traditionelle Capital Asset Pricing Model (CAPM) um zwei weitere Faktoren: die Größe (Size) und den Buchwert-Marktwert-Verhältnis (Value).

Im Fama-French-Modell wird die erwartete Rendite einer Aktie durch die Formel

E(Ri)=Rf+βi(E(Rm)−Rf)+s⋅SMB+h⋅HMLE(R_i) = R_f + \beta_i (E(R_m) - R_f) + s \cdot SMB + h \cdot HMLE(Ri​)=Rf​+βi​(E(Rm​)−Rf​)+s⋅SMB+h⋅HML

beschrieben, wobei E(Ri)E(R_i)E(Ri​) die erwartete Rendite der Aktie, RfR_fRf​ der risikofreie Zinssatz, βi\beta_iβi​ der Marktrisiko-Faktor, SMBSMBSMB (Small Minus Big) den Größenfaktor und HMLHMLHML (High Minus Low) den Wertfaktor darstellt.

Das Modell zeigt, dass kleinere Unternehmen tendenziell höhere Renditen erzielen als größere Unternehmen und dass Aktien mit einem hohen Buchwert im Vergleich zum Marktwert bessere Renditen bieten als solche mit einem niedrigen Buchwert. Dies macht das Fama-French-Modell zu einem wichtigen Instrument für Investoren und Finanzanalysten zur Bewertung von Aktien und zur Portfolio-Optimierung

Tobin-Steuer

Die Tobin Tax ist eine vorgeschlagene Steuer auf internationale Finanztransaktionen, die vom Ökonomen James Tobin in den 1970er Jahren eingeführt wurde. Ihr Ziel ist es, die Spekulation auf Währungen zu verringern und die Stabilität der Finanzmärkte zu fördern. Die Steuer würde auf den Umtausch von Währungen erhoben werden, wobei ein kleiner Prozentsatz des Transaktionsvolumens als Steuer abgezogen wird.

Durch diese Maßnahme soll eine Abschreckung von kurzfristigen Spekulationen erreicht werden, während langfristige Investitionen nicht übermäßig belastet werden. Die Einnahmen aus der Tobin Tax könnten zudem zur Finanzierung von Entwicklungsprojekten und zur Bekämpfung von Armut eingesetzt werden. Kritiker argumentieren jedoch, dass eine solche Steuer die Liquidität der Märkte beeinträchtigen und zu höheren Transaktionskosten führen könnte.

Ramjet-Verbrennung

Ramjet-Verbrennung ist ein Verfahren, das in Ramjet-Triebwerken verwendet wird, um Schub zu erzeugen, insbesondere bei hohen Geschwindigkeiten. Der grundlegende Mechanismus besteht darin, dass die Luft, die in das Triebwerk eintritt, durch die hohe Geschwindigkeit des Fahrzeugs komprimiert wird, ohne dass bewegliche Teile benötigt werden. Diese komprimierte Luft wird dann mit Kraftstoff, meist Wasserstoff oder Kerosin, vermischt und in einer Brennkammer entzündet. Die chemische Reaktion während der Verbrennung erzeugt eine hohe Temperatur und einen hohen Druck, was zu einer schnellen Expansion der Gase führt. Diese Expansion treibt die Gase durch eine Düse nach hinten und erzeugt einen Schub gemäß dem Impulsprinzip:

F=d(mv)dtF = \frac{d(mv)}{dt}F=dtd(mv)​

Dabei steht FFF für den erzeugten Schub, mmm für die Masse der Gase und vvv für die Geschwindigkeit der ausgestoßenen Gase. Ein entscheidendes Merkmal der Ramjet-Technologie ist, dass sie bei Unterschallgeschwindigkeit nicht funktioniert, da sie auf der Vorwärtsbewegung angewiesen ist, um die notwendige Luftkompression zu erreichen.

Epigenetische Reprogrammierung

Epigenetic Reprogramming bezieht sich auf die Fähigkeit von Zellen, ihre epigenetischen Marker zu verändern, was zu einer Umprogrammierung ihrer Genexpression führt, ohne die zugrunde liegende DNA-Sequenz zu verändern. Epigenetik umfasst Mechanismen wie DNA-Methylierung und Histonmodifikationen, die die Aktivität von Genen regulieren. Durch Reprogrammierung können Zellen in einen früheren Entwicklungszustand zurückversetzt werden, was für Therapien in der regenerativen Medizin und der Krebsforschung von Bedeutung ist. Ein Beispiel für epigenetische Reprogrammierung ist die Rückführung von somatischen Zellen zu pluripotenten Stammzellen, die das Potenzial haben, sich in verschiedene Zelltypen zu differenzieren. Diese Fähigkeit eröffnet neue Perspektiven in der personalisierten Medizin und der Behandlung von genetischen Erkrankungen.

Hadamard-Matrix-Anwendungen

Hadamard-Matrizen finden in verschiedenen Bereichen der Mathematik und Informatik Anwendung, insbesondere in der Signalverarbeitung, Statistik und Quantencomputing. Diese speziellen Matrizen, die aus Einträgen von ±1 bestehen und orthogonal sind, ermöglichen effiziente Berechnungen und Analysen. In der Signalverarbeitung werden sie häufig in der Kollokation und im Multikanal-Signaldesign verwendet, um Rauschunterdrückung und Datenkompression zu verbessern. Darüber hinaus kommen Hadamard-Matrizen auch in der Kombinatorik vor, etwa bei der Konstruktion von experimentellen Designs, die eine optimale Verteilung von Behandlungsvariablen ermöglichen. In der Quanteninformatik können sie zur Implementierung von Quanten-Gattern, wie dem Hadamard-Gatter, verwendet werden, das eine wichtige Rolle bei der Erzeugung von Überlagerungen spielt.

Harberger-Dreieck

Das Harberger-Dreieck ist ein Konzept aus der ökonomischen Theorie, das die Wohlfahrtsverluste beschreibt, die durch Steuererhebungen oder Marktverzerrungen entstehen. Es veranschaulicht, wie eine Steuer auf ein Gut die Effizienz des Marktes beeinträchtigt, indem sie das Konsumverhalten verändert und somit die Gesamtwohlfahrt verringert. Das Dreieck entsteht durch die Differenz zwischen der Konsumenten- und Produzentenrente vor und nach der Einführung einer Steuer.

In der grafischen Darstellung zeigt das Harberger-Dreieck die Flächenveränderungen der Rente, die verloren gehen, weil die Steuer den Preis und die Menge des gehandelten Gutes beeinflusst. Die Formel für die Wohlfahrtsverluste könnte als
WL=12×Basis×Ho¨heWL = \frac{1}{2} \times \text{Basis} \times \text{Höhe}WL=21​×Basis×Ho¨he
dargestellt werden, wobei die Basis die Menge und die Höhe die Steuer ist. Insgesamt verdeutlicht das Harberger-Dreieck, dass solche Verzerrungen nicht nur die Marktteilnehmer, sondern auch die gesamtwirtschaftliche Effizienz negativ beeinflussen.