StudierendeLehrende

Cournot Oligopoly

Das Cournot-Oligopol ist ein Marktmodell, das beschreibt, wie Unternehmen in einem Oligopol ihre Produktionsmengen gleichzeitig und unabhängig voneinander festlegen, um ihren Gewinn zu maximieren. In diesem Modell gehen die Unternehmen davon aus, dass die Produktionsmengen der anderen Firmen konstant bleiben, während sie ihre eigene Menge wählen. Die Nachfrage auf dem Markt wird durch eine inverse Nachfragefunktion dargestellt, die typischerweise in der Form P(Q)=a−bQP(Q) = a - bQP(Q)=a−bQ gegeben ist, wobei PPP der Preis, QQQ die Gesamtmenge und aaa sowie bbb Parameter sind.

Die Unternehmen müssen ihre Entscheidung auf der Grundlage der erwarteten Reaktionen der Wettbewerber treffen, was zu einem Gleichgewicht führt, das als Cournot-Gleichgewicht bezeichnet wird. In diesem Gleichgewicht hat jedes Unternehmen einen Anreiz, seine Produktion zu ändern, solange die anderen Unternehmen ihre Mengen beibehalten, was zu stabilen Marktanteilen und Preisen führt. Ein zentrales Merkmal des Cournot-Oligopols ist, dass die Unternehmen in der Regel versuchen, ihre Gewinne durch strategische Interaktion zu maximieren, was zu einer kollusiven oder nicht-kollusiven Marktdynamik führen kann.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Rf Mems Switch

Ein Rf Mems Switch (Radiofrequenz-Mikroelektromechanisches System) ist ein elektronisches Bauelement, das zur Steuerung von Hochfrequenzsignalen in Kommunikationssystemen verwendet wird. Diese Schalter nutzen mikroskopisch kleine mechanische Strukturen, die sich bewegen, um den Signalfluss zu öffnen oder zu schließen. Im Gegensatz zu herkömmlichen elektrischen Schaltern bieten Rf Mems Switches eine hohe Effizienz, geringe Verlustleistung und eine schnelle Schaltgeschwindigkeit.

Die Funktionsweise basiert auf dem Prinzip der Membranbewegung, die durch elektrische Signale aktiviert wird. Ein Beispiel für ihren Einsatz findet sich in der Telekommunikation, wo sie in Antennenarrays oder in der Signalverarbeitung verwendet werden, um die Leistung und Flexibilität zu erhöhen. Zu den Vorteilen gehören:

  • Kompakte Bauweise
  • Hohe Isolation
  • Niedriger Energieverbrauch

Damit sind Rf Mems Switches eine Schlüsseltechnologie für zukünftige Systeme in der drahtlosen Kommunikation.

NAIRU

Der Begriff NAIRU steht für "Non-Accelerating Inflation Rate of Unemployment" und bezieht sich auf die Arbeitslosenquote, bei der die Inflation stabil bleibt. Das Konzept geht davon aus, dass es eine bestimmte Arbeitslosenquote gibt, unterhalb derer die Inflation dazu neigt, zu steigen, und oberhalb derer sie sinkt. Ein zentrales Element der Arbeitsmarktökonomie ist, dass die NAIRU nicht konstant ist und von verschiedenen Faktoren beeinflusst werden kann, wie z.B. der Produktivität, der Arbeitsmarktdynamik und der politischen Rahmenbedingungen.

Die NAIRU ist besonders wichtig für die Geldpolitik, da Zentralbanken versuchen, die Inflation zu steuern, während sie gleichzeitig die Arbeitslosigkeit im Auge behalten. Um den NAIRU zu schätzen, werden oft ökonometrische Modelle verwendet, die historische Daten und verschiedene wirtschaftliche Indikatoren berücksichtigen. In der Praxis bedeutet dies, dass eine zu niedrige Arbeitslosenquote zu einer Beschleunigung der Inflation führen kann, während eine zu hohe Quote das Wirtschaftswachstum hemmt.

Bayesian-Nash

Der Bayesian Nash-Gleichgewicht ist ein Konzept in der Spieltheorie, das sich mit Situationen beschäftigt, in denen Spieler unvollständige Informationen über die anderen Spieler haben. In einem solchen Spiel hat jeder Spieler eigene private Informationen, die seine Strategiewahl beeinflussen können. Im Gegensatz zum klassischen Nash-Gleichgewicht, bei dem alle Spieler vollständige Informationen haben, berücksichtigt der Bayesian Nash-Gleichgewicht die Unsicherheiten und Erwartungen über die Typen der anderen Spieler.

Ein Spieler wählt seine Strategie, um seinen erwarteten Nutzen zu maximieren, wobei er Annahmen über die Strategien und Typen der anderen Spieler trifft. Mathematisch wird ein Bayesian Nash-Gleichgewicht als ein Profil von Strategien (s1∗,s2∗,…,sn∗)(s_1^*, s_2^*, \ldots, s_n^*)(s1∗​,s2∗​,…,sn∗​) definiert, bei dem für jeden Spieler iii gilt:

Ui(si∗,s−i∗)≥Ui(si,s−i∗)∀siU_i(s_i^*, s_{-i}^*) \geq U_i(s_i, s_{-i}^*) \quad \forall s_iUi​(si∗​,s−i∗​)≥Ui​(si​,s−i∗​)∀si​

Hierbei ist UiU_iUi​ der Nutzen für Spieler iii, s−i∗s_{-i}^*s−i∗​ die Strategien der anderen Spieler und sis_isi​ eine alternative Strategie für Spieler iii.

Homotopieäquivalenz

Homotopieäquivalenz ist ein Konzept aus der algebraischen Topologie, das zwei topologische Räume verbindet, indem es zeigt, dass sie in gewissem Sinne "gleich" sind. Zwei topologische Räume XXX und YYY heißen homotopieäquivalent, wenn es zwei kontinuierliche Abbildungen f:X→Yf: X \to Yf:X→Y und g:Y→Xg: Y \to Xg:Y→X gibt, die folgende Bedingungen erfüllen:

  1. Die Komposition g∘fg \circ fg∘f ist homotop zu der Identitätsabbildung auf XXX, also g∘f≃idXg \circ f \simeq \text{id}_Xg∘f≃idX​.
  2. Die Komposition f∘gf \circ gf∘g ist homotop zu der Identitätsabbildung auf YYY, also f∘g≃idYf \circ g \simeq \text{id}_Yf∘g≃idY​.

Diese Bedingungen bedeuten, dass fff und ggg quasi die umgekehrten Prozesse sind, wobei homotop eine kontinuierliche Deformation beschreibt. Homotopieäquivalente Räume haben die gleiche Homotopietyp und teilen viele topologische Eigenschaften, was sie zu einem zentralen Konzept in der algebraischen Topologie macht.

Mems-Sensoren

MEMS-Sensoren (Micro-Electro-Mechanical Systems) sind mikroskopisch kleine Geräte, die mechanische und elektrische Komponenten kombinieren, um physikalische Größen wie Beschleunigung, Druck, Temperatur und Feuchtigkeit zu messen. Diese Sensoren basieren auf der Integration von Mikroelektronik und mechanischen Strukturen auf einem einzigen Chip, was sie besonders kompakt und leistungsfähig macht.

Die Funktionsweise beruht häufig auf der Nutzung von Mikrostrukturen, die auf physikalische Änderungen wie Bewegungen oder Druck reagieren und diese in elektrische Signale umwandeln. Ein typisches Beispiel sind Beschleunigungssensoren, die die Änderung der Bewegung messen, indem sie die Verschiebung einer Masse in einem Mikrochip detektieren. MEMS-Sensoren finden breite Anwendung in der Automobilindustrie, der Medizintechnik, der Unterhaltungselektronik und vielen anderen Bereichen, da sie eine kostengünstige und präzise Möglichkeit bieten, Daten in Echtzeit zu erfassen und zu verarbeiten.

Quantum Monte Carlo

Quantum Monte Carlo (QMC) ist eine Gruppe von stochastischen Methoden, die zur Lösung quantenmechanischer Probleme verwendet werden. Diese Techniken kombinieren die Prinzipien der Quantenmechanik mit Monte-Carlo-Simulationen, um die Eigenschaften von quantenmechanischen Systemen wie Atomen oder Molekülen zu berechnen. Dabei werden Zufallszahlen genutzt, um Integrale über hochdimensionale Raumzustände zu approximieren, was besonders nützlich ist, da herkömmliche numerische Methoden oft aufgrund der Komplexität der quantenmechanischen Systeme versagen.

Ein zentrales Konzept in QMC ist die Verwendung der Wellenfunktion, die die quantenmechanischen Eigenschaften eines Systems beschreibt. Durch das Sampling dieser Wellenfunktion können Energieniveaus, Molekülorbitalformen und andere physikalische Eigenschaften ermittelt werden. Zu den häufigsten QMC-Methoden gehören die Variational Monte Carlo (VMC) und die Diffusion Monte Carlo (DMC), die unterschiedliche Ansätze zur Berechnung der Grundzustandsenergie eines Systems verfolgen.