StudierendeLehrende

Dynamic Stochastic General Equilibrium

Dynamic Stochastic General Equilibrium (DSGE) ist ein wirtschaftswissenschaftliches Modell, das verwendet wird, um die Dynamik von Volkswirtschaften über die Zeit zu analysieren und zu verstehen. Bei DSGE-Modellen wird angenommen, dass die Wirtschaft von verschiedenen stochastischen Schocks (z. B. technologische Veränderungen, Politikänderungen) beeinflusst wird, die zufällig auftreten können. Diese Modelle integrieren sowohl dynamische als auch stochastische Elemente, was bedeutet, dass sie die Zeitdimension berücksichtigen und gleichzeitig Unsicherheiten in der Wirtschaft abbilden.

Die Grundstruktur eines DSGE-Modells umfasst typischerweise:

  • Haushalte, die Entscheidungen über Konsum und Ersparnis treffen,
  • Unternehmen, die Produktionsentscheidungen basierend auf Kosten und Erträgen treffen,
  • Regierungen, die fiskalpolitische Entscheidungen treffen.

Mathematisch werden diese Modelle häufig durch Gleichungen dargestellt, die das Verhalten der verschiedenen Akteure in der Wirtschaft und ihre Interaktionen beschreiben. Ein einfaches Beispiel für eine Gleichung könnte sein:

Yt=AtKtαLt1−αY_t = A_t K_t^\alpha L_t^{1-\alpha}Yt​=At​Ktα​Lt1−α​

Hierbei ist YtY_tYt​ die Produktionsmenge, AtA_tAt​ der technologische Fortschritt, KtK_tKt​ der Kapitalstock und LtL_tLt​ die Arbeit. DSG

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Quanten-Hall

Der Quantum Hall-Effekt ist ein physikalisches Phänomen, das in zweidimensionalen Elektronensystemen auftritt, die bei extrem niedrigen Temperaturen und in starken Magnetfeldern betrachtet werden. Bei diesen Bedingungen quantisieren sich die Energieniveaus der Elektronen, was zu einer quantisierten Widerstandsänderung führt, die als Hall-Widerstand bekannt ist. Der Hall-Widerstand RHR_HRH​ ist gegeben durch die Beziehung:

RH=he2νR_H = \frac{h}{e^2 \nu}RH​=e2νh​

Hierbei ist hhh das Plancksche Wirkungsquantum, eee die Elementarladung und ν\nuν die Füllfaktorzahl, die den Zustand des Systems beschreibt. Ein bemerkenswerter Aspekt des Quantum Hall-Effekts ist, dass der Hall-Widerstand nur diskrete Werte annehmen kann, was zu einer sehr präzisen Messung von fundamentalen physikalischen Konstanten führt. Der Effekt hat nicht nur grundlegendere Bedeutung für die Festkörperphysik, sondern auch praktische Anwendungen in der Metrologie und der Entwicklung von präzisen elektrischen Standards.

Heap-Sort

Heap Sort ist ein effizienter Sortieralgorithmus, der auf der Datenstruktur Heap basiert, einem speziellen binären Baum. Der Algorithmus besteht aus zwei Hauptschritten: Zunächst wird ein Max-Heap aus den unsortierten Daten erstellt, wobei das größte Element an der Wurzel des Heaps positioniert wird. Danach wird das größte Element (die Wurzel) entfernt und am Ende des Array platziert, gefolgt von der Wiederherstellung der Heap-Eigenschaft für die verbleibenden Elemente. Dieser Vorgang wird wiederholt, bis alle Elemente sortiert sind.

Die Zeitkomplexität von Heap Sort beträgt O(nlog⁡n)O(n \log n)O(nlogn) im schlimmsten Fall, was ihn zu einem stabilen und zuverlässigen Algorithmus für große Datenmengen macht. Zudem benötigt er nur O(1)O(1)O(1) zusätzlichen Speicher, da er in-place arbeitet.

Ipo-Preisfestsetzung

Das IPO Pricing (Initial Public Offering Pricing) bezieht sich auf den Prozess der Festlegung des Preises, zu dem Aktien eines Unternehmens beim ersten Verkauf an die Öffentlichkeit angeboten werden. Dieser Preis ist entscheidend, da er sowohl die Wahrnehmung des Unternehmens durch Investoren als auch die Kapitalbeschaffung beeinflusst. Bei der Preisfestlegung berücksichtigen Banken und Unternehmen verschiedene Faktoren, darunter Marktanalyse, Nachfrageprognosen und finanzielle Kennzahlen. Ein häufig verwendetes Verfahren ist die Bookbuilding-Methode, bei der Investoren ihre Kaufinteresse und Preisvorstellungen angeben. Letztendlich wird der IPO-Preis so festgelegt, dass er sowohl für das Unternehmen als auch für die Investoren attraktiv ist und eine erfolgreiche Platzierung der Aktien gewährleistet.

Eigenvektoren

Eigenvektoren sind spezielle Vektoren, die in der linearen Algebra eine zentrale Rolle spielen. Sie sind definiert als nicht-null Vektoren v\mathbf{v}v, die bei der Anwendung einer bestimmten linearen Transformation AAA in der Form Av=λvA\mathbf{v} = \lambda \mathbf{v}Av=λv nur in ihrer Richtung, nicht aber in ihrer Länge geändert werden. Hierbei ist λ\lambdaλ ein Skalar, der als Eigenwert bezeichnet wird. Die Idee hinter Eigenvektoren ist, dass sie die "Richtungen" repräsentieren, in denen eine Transformation stattfindet, während die Eigenwerte die Skalierung in diesen Richtungen angeben. Eigenvektoren finden Anwendung in verschiedenen Bereichen wie der Statistik (z.B. Hauptkomponentenanalyse), der Physik und der Ingenieurwissenschaft, da sie helfen, komplexe Systeme zu analysieren und zu verstehen.

Kalman-Filterung in der Robotik

Kalman-Filter sind eine leistungsstarke Methode zur Schätzung des Zustands eines dynamischen Systems in der Robotik. Sie kombinieren Messungen von Sensoren mit Modellen der Fahrzeugbewegung, um präzisere Schätzungen der Position und Geschwindigkeit zu liefern. Der Filter arbeitet in zwei Hauptschritten: dem Vorhersageschritt, in dem der zukünftige Zustand basierend auf dem aktuellen Zustand und dem Bewegungsmodell geschätzt wird, und dem Aktualisierungsschritt, in dem die Schätzung mit den neuen Messdaten aktualisiert wird. Mathematisch wird die Schätzung durch die Gleichungen:

x^k∣k−1=Fkx^k−1∣k−1+Bkuk\hat{x}_{k|k-1} = F_k \hat{x}_{k-1|k-1} + B_k u_kx^k∣k−1​=Fk​x^k−1∣k−1​+Bk​uk​

und

x^k∣k=x^k∣k−1+Kk(zk−Hkx^k∣k−1)\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k (z_k - H_k \hat{x}_{k|k-1})x^k∣k​=x^k∣k−1​+Kk​(zk​−Hk​x^k∣k−1​)

definiert, wobei x^\hat{x}x^ die Schätzung, FFF die Übergangsmatrix, BBB die Steuerungsmatrix, KKK die Kalman-Verstärkung, zzz die Messung und HHH die Beobachtungsmatrix darstellt. Durch die Verwendung des Kalman-Filters können Roboter ihre Position und Orientierung in Echt

Eigenvektor-Zentralität

Die Eigenvector Centrality ist ein Maß für die Bedeutung eines Knotens in einem Netzwerk, das nicht nur die Anzahl der Verbindungen (Grad) berücksichtigt, sondern auch die Qualität und Relevanz dieser Verbindungen. Ein Knoten wird als zentral angesehen, wenn er mit anderen zentralen Knoten verbunden ist. Mathematisch wird die Eigenvector Centrality durch die Eigenvektoren der Adjazenzmatrix eines Graphen beschrieben.

Die grundlegende Idee ist, dass die Centrality eines Knotens proportional zur Summe der Centrality seiner Nachbarn ist. Dies kann formal ausgedrückt werden als:

xi=1λ∑j∈N(i)xjx_i = \frac{1}{\lambda} \sum_{j \in N(i)} x_jxi​=λ1​j∈N(i)∑​xj​

wobei xix_ixi​ die Centrality des Knotens iii, N(i)N(i)N(i) die Nachbarn von iii und λ\lambdaλ ein Normalisierungsfaktor ist. Ein höherer Wert in der Eigenvector Centrality deutet darauf hin, dass ein Knoten nicht nur viele Verbindungen hat, sondern auch mit anderen wichtigen Knoten verbunden ist. Diese Methode wird häufig in sozialen Netzwerken, biologischen Netzwerken und in der Analyse von Internetseiten verwendet, um die Wichtigkeit und den Einfluss von Knoten zu bewerten.