StudierendeLehrende

Farkas Lemma

Das Farkas Lemma ist ein fundamentales Resultat in der linearen Algebra und der mathematischen Optimierung. Es befasst sich mit der Frage, unter welchen Bedingungen ein bestimmtes System von linearen Ungleichungen lösbar ist. Formal ausgedrückt, besagt das Lemma, dass für zwei Vektoren b∈Rmb \in \mathbb{R}^mb∈Rm und A∈Rm×nA \in \mathbb{R}^{m \times n}A∈Rm×n entweder das System der Ungleichungen Ax≤bAx \leq bAx≤b eine Lösung xxx hat oder das System der Gleichungen yTA=0y^T A = 0yTA=0 und yTb<0y^T b < 0yTb<0 für ein y≥0y \geq 0y≥0 lösbar ist.

Das Farkas Lemma ist besonders nützlich in der dualen Optimierung, da es hilft, die Existenz von Lösungen zu bestimmen und die Beziehungen zwischen primalen und dualen Problemen zu verstehen. Es wird oft in der Theorie der linearen Optimierung und in Anwendungen verwendet, die von der Wirtschafts- und Sozialwissenschaft bis hin zur Ingenieurwissenschaft reichen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Principal-Agent-Risiko

Das Principal-Agent-Risiko beschreibt die Probleme, die auftreten, wenn ein Auftraggeber (Principal) und ein Beauftragter (Agent) unterschiedliche Interessen und Informationsstände haben. In der Regel beauftragt der Principal den Agenten, um bestimmte Aufgaben zu erfüllen, wobei der Agent jedoch möglicherweise nicht im besten Interesse des Principals handelt. Dies kann zu ineffizienten Entscheidungen oder Handlungen führen, die den Wert für den Principal verringern.

Ein klassisches Beispiel ist die Beziehung zwischen Aktionären (Principals) und Unternehmensmanagern (Agenten). Während die Aktionäre an der Maximierung des Unternehmenswertes interessiert sind, könnte der Manager geneigt sein, persönliche Interessen oder kurzfristige Gewinne zu verfolgen. Um dieses Risiko zu minimieren, können Anreizsysteme, wie Boni oder Aktienoptionen, eingeführt werden, die den Agenten dazu motivieren, im besten Interesse des Principals zu handeln.

Vektorregelung von Wechselstrommotoren

Die Vektorkontrolle (oder auch Feldorientierte Steuerung) von Wechselstrommotoren ist eine fortschrittliche Regelungstechnik, die es ermöglicht, die Drehmoment- und Flusskontrolle von Motoren präzise zu steuern. Diese Methode basiert auf der Umwandlung der Motorstromkomponenten in ein drehendes Koordinatensystem, was eine separate Kontrolle von Drehmoment und Fluss ermöglicht. Die Grundidee ist, den Motorstrom in zwei orthogonale Komponenten zu zerlegen: die d-q-Achsen (direkte und quadratische Achse). Hierdurch wird es möglich, den Motor wie einen Gleichstrommotor zu steuern, was eine bessere Dynamik und Effizienz bietet.

Um dies zu realisieren, werden die folgenden Schritte durchgeführt:

  1. Messung der Motorparameter: Daten wie Drehmoment, Fluss und Geschwindigkeit werden erfasst.
  2. Transformation: Die Ströme werden von der dreiphasigen in die d-q-Koordinatenform umgewandelt.
  3. Regelung: Über PI-Regler werden die d-q-Ströme gesteuert, um gewünschte Werte zu erreichen.
  4. Rücktransformation: Die d-q-Ströme werden zurück in die dreiphasige Form umgewandelt, um den Motor anzutreiben.

Diese Technik führt

Stringtheorie-Dimensionen

Die Stringtheorie ist ein theoretisches Rahmenwerk in der Physik, das versucht, die fundamentalen Bausteine des Universums als eindimensionale "Strings" anstelle von punktförmigen Teilchen zu beschreiben. Diese Strings können in verschiedenen Schwingungsmodi existieren, und jede Schwingungsart entspricht einem unterschiedlichen Teilchen. Ein zentrales Konzept der Stringtheorie ist die Annahme, dass das Universum nicht nur die vertrauten drei Raumdimensionen und eine Zeitdimension hat, sondern zusätzliche Dimensionen, die für uns nicht direkt wahrnehmbar sind.

In vielen Versionen der Stringtheorie wird angenommen, dass es insgesamt 10 oder 11 Dimensionen gibt. Diese zusätzlichen Dimensionen sind oft kompaktifiziert, was bedeutet, dass sie auf sehr kleinen Skalen gefaltet oder gerollt sind, sodass sie im Alltag nicht sichtbar sind. Die Struktur und die Eigenschaften dieser zusätzlichen Dimensionen spielen eine entscheidende Rolle bei der Bestimmung der physikalischen Gesetze, die die Teilchen und deren Wechselwirkungen beschreiben.

Hopcroft-Karp Matching

Das Hopcroft-Karp-Algorithmus ist ein effizienter Algorithmus zur Berechnung eines maximalen Matchings in bipartiten Graphen. Ein bipartiter Graph besteht aus zwei Mengen von Knoten, wobei Kanten nur zwischen Knoten aus verschiedenen Mengen existieren. Der Algorithmus kombiniert zwei Hauptphasen: die Suche nach augmentierenden Pfaden und die Aktualisierung des Matchings. Durch eine geschickte Anwendung von Breadth-First Search (BFS) und Depth-First Search (DFS) gelingt es, die Anzahl der benötigten Iterationen erheblich zu reduzieren, wodurch die Laufzeit auf O(EV)O(E \sqrt{V})O(EV​) sinkt, wobei EEE die Anzahl der Kanten und VVV die Anzahl der Knoten im Graphen ist. Die Idee hinter dem Algorithmus ist, dass durch das Finden und Ausnutzen von augmentierenden Pfaden das Matching schrittweise vergrößert wird, bis kein weiterer augmentierender Pfad mehr gefunden werden kann.

A*-Suche

A* Search ist ein leistungsfähiger Algorithmus zur Pfadsuche und wird häufig in der Informatik eingesetzt, um den kürzesten Weg in Graphen zu finden. Er kombiniert die Vorzüge der Dijkstra-Methode und der Greedy-Best-First-Search, indem er sowohl die tatsächlichen Kosten vom Startknoten zu einem gegebenen Knoten als auch eine Schätzung der Kosten vom gegebenen Knoten zum Zielknoten berücksichtigt. Diese Schätzung wird durch eine Heuristik h(n)h(n)h(n) dargestellt, die die verbleibenden Kosten approximiert.

Der Gesamtkostenwert f(n)f(n)f(n) eines Knotens wird durch folgende Formel definiert:

f(n)=g(n)+h(n)f(n) = g(n) + h(n)f(n)=g(n)+h(n)

wobei g(n)g(n)g(n) die Kosten vom Startknoten bis zum aktuellen Knoten nnn sind. A* Search garantiert, dass der gefundene Pfad optimal ist, vorausgesetzt, die verwendete Heuristik ist admissibel, d.h. sie überschätzt die tatsächlichen Kosten nicht. Der Algorithmus ist besonders nützlich in Anwendungen wie Robotik, Spieleentwicklung und Routenplanung, da er effizient und flexibel ist.

Hydraulisches Modellieren

Hydraulic Modeling ist ein wichtiges Werkzeug in der Ingenieurwissenschaft, das verwendet wird, um das Verhalten von Flüssigkeiten in verschiedenen Systemen zu simulieren und zu analysieren. Diese Modelle können sowohl physikalisch als auch numerisch sein und helfen Ingenieuren, die Strömung von Wasser in Flüssen, Kanälen oder städtischen Abwassersystemen zu verstehen. Durch die Anwendung von mathematischen Gleichungen, wie der Bernoulli-Gleichung oder den Navier-Stokes-Gleichungen, können verschiedene Szenarien untersucht werden, um die Auswirkungen von Änderungen in der Geometrie oder den Betriebsbedingungen zu bewerten.

Zu den häufigsten Anwendungen von Hydraulic Modeling gehören:

  • Hochwassermanagement: Vorhersage von Überflutungen und Entwicklung von Schutzmaßnahmen.
  • Wasserverteilungssysteme: Optimierung der Druckverhältnisse und Identifizierung von Leckagen.
  • Umweltstudien: Untersuchung der Auswirkungen von menschlichen Aktivitäten auf natürliche Wasserressourcen.

Durch die Verwendung von hydraulischen Modellen können Ingenieure fundierte Entscheidungen treffen und die Effizienz sowie die Sicherheit von Wassersystemen verbessern.