StudierendeLehrende

Ferroelectric Domain Switching

Ferroelectric Domain Switching bezieht sich auf den Prozess, bei dem sich die Ausrichtung der elektrischen Dipole innerhalb eines ferroelectric Materials ändert. In ferroelectric Materialien existieren verschiedene Domänen, die jeweils eine bevorzugte Richtung der elektrischen Polarisation aufweisen. Durch Anlegen eines externen elektrischen Feldes kann die Polarisation in einer bestimmten Domäne umgeschaltet werden, was zu einer Umkehrung der Dipolrichtung führt. Dieser Prozess ist entscheidend für die Funktion von ferroelectricen Materialien in Anwendungen wie Speichern von Informationen, Sensoren und Aktuatoren. Die Effizienz des Domain Switching hängt von verschiedenen Faktoren ab, einschließlich der Materialstruktur und der Stärke des angelegten elektrischen Feldes. Mathematisch kann dieser Prozess durch die Beziehung zwischen dem äußeren elektrischen Feld EEE und der Polarisation PPP beschrieben werden, wobei die Änderung der Polarisation proportional zum angelegten Feld ist:

ΔP=ϵ⋅E\Delta P = \epsilon \cdot EΔP=ϵ⋅E

wobei ϵ\epsilonϵ die dielektrische Suszeptibilität des Materials darstellt.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Simrank Link Prediction

SimRank ist ein Maß zur Quantifizierung der Ähnlichkeit zwischen Knoten in einem Netzwerk, basierend auf der Struktur und den Verbindungen des Graphen. Es wurde entwickelt, um Vorhersagen darüber zu treffen, wie wahrscheinlich es ist, dass zwei Knoten in der Zukunft miteinander verbunden sind. Der Grundsatz hinter SimRank lautet: "Ähnliche Objekte sind diejenigen, die ähnliche Objekte haben." Dies bedeutet, dass die Ähnlichkeit zwischen zwei Knoten aaa und bbb durch die Ähnlichkeit ihrer Nachbarn bestimmt wird.

Mathematisch wird dies oft durch die folgende rekursive Gleichung dargestellt:

S(a,b)=C∣N(a)∣⋅∣N(b)∣∑x∈N(a)∑y∈N(b)S(x,y)S(a, b) = \frac{C}{|N(a)| \cdot |N(b)|} \sum_{x \in N(a)} \sum_{y \in N(b)} S(x, y)S(a,b)=∣N(a)∣⋅∣N(b)∣C​x∈N(a)∑​y∈N(b)∑​S(x,y)

Hierbei ist S(a,b)S(a, b)S(a,b) die SimRank-Ähnlichkeit zwischen den Knoten aaa und bbb, CCC ist eine Konstante, und N(x)N(x)N(x) bezeichnet die Nachbarknoten von xxx. SimRank findet Anwendung in verschiedenen Bereichen wie sozialen Netzwerken, Empfehlungssystemen und biologischen Netzwerken, um potenzielle Verbindungen oder Interaktionen vorherzusagen.

Neurale ODEs

Neural ODEs (Neural Ordinary Differential Equations) sind ein innovativer Ansatz in der maschinellen Lerntechnik, der die Konzepte von neuronalen Netzen und Differentialgleichungen kombiniert. Sie ermöglichen es, kontinuierliche zeitliche Entwicklungen von Daten zu modellieren, indem sie das Verhalten eines Systems als Differentialgleichung beschreiben. Anstatt wie herkömmliche neuronale Netze diskrete Schichten zu verwenden, lernen Neural ODEs eine dynamische Transformation der Eingabedaten über die Zeit.

Die grundlegende Idee ist, dass man die Ableitung eines Zustands dz(t)dt=f(z(t),t;θ)\frac{dz(t)}{dt} = f(z(t), t; \theta)dtdz(t)​=f(z(t),t;θ) mit einem neuronalen Netzwerk fff approximiert, wobei z(t)z(t)z(t) der Zustand des Systems zu einem bestimmten Zeitpunkt ttt ist und θ\thetaθ die Parameter des Netzwerks darstellt. Durch die Integration dieser Differentialgleichung kann man den Zustand über die Zeit verfolgen, was besonders nützlich ist für Anwendungen in der Zeitreihenanalyse und in der Physik. Neural ODEs bieten zudem die Möglichkeit, die Modellkomplexität dynamisch zu steuern, was sie zu einem vielversprechenden Werkzeug für die Datenanalyse und das maschinelle Lernen macht.

Pauli-Ausschlussprinzip-Quantenzahlen

Die Pauli-Ausschlussregel besagt, dass zwei identische Fermionen, wie Elektronen, nicht denselben Quantenzustand einnehmen können. Diese Regel ist entscheidend für das Verständnis der Elektronenkonfiguration in Atomen und erklärt, warum sich Elektronen in verschiedenen Orbitalen anordnen. Um diese Regel zu quantifizieren, werden vier Quantenzahlen verwendet:

  1. Hauptquantenzahl (nnn): Gibt das Energieniveau des Elektrons an.
  2. Nebenquantenzahl (lll): Bestimmt die Form des Orbitals (z.B. sphärisch, hantelförmig).
  3. Magnetquantenzahl (mlm_lml​): Gibt die Orientierung des Orbitals im Raum an.
  4. Spinquantenzahl (msm_sms​): Beschreibt die Spinrichtung des Elektrons und kann den Wert +12+\frac{1}{2}+21​ oder −12-\frac{1}{2}−21​ annehmen.

Da zwei Elektronen im selben Atom nicht identisch sein können, unterscheidet sich mindestens eine ihrer Quantenzahlen. Dies führt zu einer klaren Struktur der Elektronenschalen und hat weitreichende Implikationen für die chemischen Eigenschaften der Elemente.

Cayley-Hamilton

Der Cayley-Hamilton-Satz ist ein fundamentales Resultat in der linearen Algebra, das besagt, dass jede quadratische Matrix AAA ihre eigene charakteristische Gleichung erfüllt. Das bedeutet, wenn wir die charakteristische Polynomialfunktion p(λ)=det⁡(A−λI)p(\lambda) = \det(A - \lambda I)p(λ)=det(A−λI) betrachten, wobei III die Einheitsmatrix ist, dann gilt:

p(A)=0p(A) = 0p(A)=0

Dies bedeutet konkret, dass wir die Matrix AAA in die Gleichung einsetzen können, um eine neue Matrix zu erhalten, die die Nullmatrix ergibt. Der Satz hat bedeutende Anwendungen in verschiedenen Bereichen, wie zum Beispiel in der Systemtheorie, der Regelungstechnik und der Differentialgleichungen. Er zeigt auch, dass das Verhalten von Matrizen durch ihre Eigenwerte und Eigenvektoren vollständig beschrieben werden kann.

PID-Gewinnanpassung

PID Gain Scheduling ist eine Technik, die in der Regelungstechnik verwendet wird, um die Leistung von PID-Reglern (Proportional-Integral-Derivativ-Regler) unter variierenden Betriebsbedingungen zu optimieren. Bei dieser Methode werden die Reglerparameter KpK_pKp​ (Proportional), KiK_iKi​ (Integral) und KdK_dKd​ (Derivativ) dynamisch angepasst, um den unterschiedlichen Anforderungen des Systems gerecht zu werden. Dies ist besonders nützlich in Anwendungen, bei denen das Systemverhalten stark von externen Faktoren wie Geschwindigkeit, Temperatur oder Druck abhängt.

Die Anpassung erfolgt in der Regel mithilfe von Vorlauf- oder Rücklaufkurven, die die Beziehung zwischen den Reglerparametern und dem aktuellen Betriebszustand darstellen. Der Regler wechselt zwischen verschiedenen Satz von PID-Gewinnen, je nach dem aktuellen Zustand, um eine optimale Regelung zu gewährleisten. Dadurch wird die Reaktionszeit verbessert und die Stabilität des Systems erhöht, was zu einer effizienteren und zuverlässigeren Steuerung führt.

Sparsame Matrixdarstellung

Eine sparse matrix (dünnbesetzte Matrix) ist eine Matrix, in der die Mehrheit der Elemente den Wert null hat. In der mathematischen und computergestützten Wissenschaft ist die effiziente Speicherung und Verarbeitung solcher Matrizen von großer Bedeutung, da die herkömmliche Speicherung viel Speicherplatz und Rechenressourcen beanspruchen würde. Um dies zu vermeiden, werden spezielle Sparse Matrix Representation-Techniken verwendet. Zu den gängigsten Ansätzen gehören:

  • Compressed Sparse Row (CSR): Speichert die nicht-null Werte, die Spaltenindizes und Zeilenzeiger in separaten Arrays.
  • Compressed Sparse Column (CSC): Ähnlich wie CSR, aber die Daten werden spaltenweise gespeichert.
  • Coordinate List (COO): Speichert die nicht-null Werte zusammen mit ihren Zeilen- und Spaltenindizes in einer Liste.

Durch diese repräsentativen Methoden kann der Speicherbedarf erheblich reduziert werden, was zu schnelleren Berechnungen und geringerer Speichernutzung führt.