StudierendeLehrende

Gan Training

Das Generative Adversarial Network (GAN) Training ist ein innovativer Ansatz im Bereich des maschinellen Lernens, der darauf abzielt, realistische Daten zu generieren. Es besteht aus zwei Hauptkomponenten: dem Generator und dem Diskriminator. Der Generator erstellt neue Datenproben, während der Diskriminator versucht, zwischen echten und vom Generator erzeugten Daten zu unterscheiden. Dieser Prozess ist als Adversarial Training bekannt, da beide Modelle gegeneinander antreten. Der Generator wird durch die Rückmeldungen des Diskriminators trainiert, um die Qualität der erzeugten Daten zu verbessern, was zu einem kontinuierlichen Lernprozess führt. Mathematisch lässt sich dies durch die Optimierung folgender Verlustfunktion darstellen:

min⁡Gmax⁡DV(D,G)=Ex∼pdata(x)[log⁡D(x)]+Ez∼pz(z)[log⁡(1−D(G(z)))]\min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{data}(x)}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))]Gmin​Dmax​V(D,G)=Ex∼pdata​(x)​[logD(x)]+Ez∼pz​(z)​[log(1−D(G(z)))]

Hierbei steht DDD für den Diskriminator, GGG für den Generator, xxx für reale Daten und zzz für Zufallsvariablen, die als Eingabe für den Generator dienen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Aktuator-Sättigung

Actuator Saturation bezeichnet den Zustand, in dem ein Aktuator (z. B. Motor oder Hydraulikzylinder) seine maximalen oder minimalen Betriebsgrenzen erreicht und nicht mehr in der Lage ist, das gewünschte Signal oder die gewünschte Bewegung auszuführen. In diesem Zustand kann der Aktuator nicht mehr proportional auf Steuerbefehle reagieren, was zu einer Verzerrung der Systemleistung führt.

Diese Sättigung kann in verschiedenen Systemen auftreten, wie zum Beispiel in Regelkreisen, wo die Eingabe über die physikalischen Grenzen des Aktuators hinausgeht. Wenn der Aktuator gesättigt ist, kann dies zu Schwankungen oder Instabilität im System führen, da die Regelung nicht mehr effektiv arbeiten kann. In mathematischen Modellen wird dies häufig durch die Verwendung von Funktionen dargestellt, die die Begrenzungen des Aktuators berücksichtigen, wie zum Beispiel:

usat={uwenn ∣u∣<umaxumaxwenn u>umaxuminwenn u<uminu_{\text{sat}} = \begin{cases} u & \text{wenn } |u| < u_{\text{max}} \\ u_{\text{max}} & \text{wenn } u > u_{\text{max}} \\ u_{\text{min}} & \text{wenn } u < u_{\text{min}} \end{cases}usat​=⎩⎨⎧​uumax​umin​​wenn ∣u∣<umax​wenn u>umax​wenn u<umin​​

Hierbei ist uuu das Steuersignal, während $ u_{\text

Satellitendatenanalyse

Satellite Data Analytics bezieht sich auf die Analyse von Daten, die durch Satelliten gesammelt werden, um wertvolle Informationen über die Erde und ihre Atmosphäre zu gewinnen. Diese Daten stammen häufig aus verschiedenen Quellen, darunter optische, radar- und multispektrale Sensoren, und können zur Überwachung von Umweltveränderungen, zur Unterstützung von Katastrophenmanagement und zur Verbesserung landwirtschaftlicher Praktiken genutzt werden. Durch den Einsatz von fortgeschrittenen Algorithmen und Machine Learning-Techniken können Analysten Muster und Trends in den Daten identifizieren, die mit traditionellen Methoden schwer zu erkennen wären. Zu den Anwendungsbereichen gehören unter anderem:

  • Umweltüberwachung: Erkennung von Entwaldung, Urbanisierung und Klimaveränderungen.
  • Agrarwirtschaft: Optimierung von Ernteerträgen durch präzise Wetter- und Bodenanalysen.
  • Stadtplanung: Verbesserung der Infrastruktur durch Analyse von Verkehrsströmen und Bevölkerungsdichten.

Die Fähigkeit, große Mengen an Satellitendaten in Echtzeit zu verarbeiten, revolutioniert nicht nur die Forschung, sondern hat auch erhebliche wirtschaftliche Implikationen, indem sie Unternehmen und Regierungen ermöglicht, informierte Entscheidungen zu treffen.

Arbitrage-Preistheorie

Die Arbitrage Pricing Theory (APT) ist ein Finanzmodell zur Bewertung von Vermögenswerten, das auf der Annahme basiert, dass der Preis eines Vermögenswerts durch verschiedene systematische Risikofaktoren bestimmt wird. Im Gegensatz zum Capital Asset Pricing Model (CAPM), das nur einen einzelnen Risikofaktor berücksichtigt (Marktrendite), identifiziert die APT mehrere Faktoren, die die Renditen beeinflussen können, wie zum Beispiel Inflation, Zinssätze oder wirtschaftliches Wachstum.

Die APT postuliert, dass, solange Arbitrage möglich ist, die erwartete Rendite eines Vermögenswerts durch die folgende Gleichung beschrieben werden kann:

E(Ri)=Rf+β1⋅(E(R1)−Rf)+β2⋅(E(R2)−Rf)+…+βn⋅(E(Rn)−Rf)E(R_i) = R_f + \beta_1 \cdot (E(R_1) - R_f) + \beta_2 \cdot (E(R_2) - R_f) + \ldots + \beta_n \cdot (E(R_n) - R_f)E(Ri​)=Rf​+β1​⋅(E(R1​)−Rf​)+β2​⋅(E(R2​)−Rf​)+…+βn​⋅(E(Rn​)−Rf​)

Hierbei ist E(Ri)E(R_i)E(Ri​) die erwartete Rendite des Vermögenswerts iii, RfR_fRf​ der risikofreie Zinssatz, und E(Rj)E(R_j)E(Rj​) die erwartete Rendite des j-ten Risikofaktors, gewichtet durch die Sensitivität βj\beta_jβj​ des Vermögenswerts gegenüber diesem Faktor. Die Theorie ist besonders nützlich

Grenzschichttheorie

Die Boundary Layer Theory ist ein fundamentales Konzept in der Strömungsmechanik, das sich mit dem Verhalten von Fluiden an festen Oberflächen beschäftigt. Bei der Strömung eines Fluids um ein Objekt, wie z.B. ein Flugzeugflügel, bildet sich an der Oberfläche eine dünne Schicht, die als Grenzschicht bezeichnet wird. In dieser Schicht sind die Geschwindigkeitsgradienten bedeutend, da die Fluidgeschwindigkeit an der Oberfläche aufgrund der viskosen Kräfte auf Null abfällt, während sie sich in der Strömung weiter entfernt vom Objekt erhöht.

Die Theorie erklärt, wie sich die Eigenschaften des Fluids innerhalb dieser Grenzschicht von den Eigenschaften des umgebenden, ungestörten Fluids unterscheiden. Ein wichtiges Ergebnis der Boundary Layer Theory ist, dass die Reibung und der Widerstand eines Objekts, das sich durch ein Fluid bewegt, stark von der Dicke und dem Verhalten dieser Grenzschicht abhängen. Mathematisch wird die Grenzschicht oft durch die Navier-Stokes-Gleichungen beschrieben, die die Bewegung von Fluiden unter Berücksichtigung von Viskosität und anderen Kräften definieren.

Sierpinski-Dreieck

Das Sierpinski-Dreieck ist ein eindrucksvolles Fraktal, das durch wiederholtes Entfernen von Dreiecken aus einem gleichseitigen Dreieck entsteht. Der Prozess beginnt mit einem großen gleichseitigen Dreieck, aus dem in der ersten Iteration das innere Dreieck (das von den Mittelpunkten der Seiten gebildet wird) entfernt wird. In der nächsten Iteration wird dieser Vorgang für die verbleibenden drei äußeren Dreiecke wiederholt, und das wird unendlich oft fortgesetzt.

Die mathematische Beschreibung des Sierpinski-Dreiecks zeigt, dass die Anzahl der Dreiecke in der nnn-ten Iteration 3n3^n3n beträgt, während die Gesamtfläche des Fraktals gegen null konvergiert, wenn nnn gegen unendlich geht. Dieses faszinierende Konstrukt hat Anwendungen in verschiedenen Bereichen, einschließlich Computergrafik, Kunst und Mathematik, und es veranschaulicht eindrucksvoll die Konzepte von Unendlichkeit und Selbstähnlichkeit.

RSA-Verschlüsselung

RSA-Verschlüsselung ist ein weit verbreitetes asymmetrisches Kryptosystem, das auf der mathematischen Schwierigkeit der Faktorisierung großer Primzahlen basiert. Es verwendet ein Schlüsselpaar, bestehend aus einem öffentlichen und einem privaten Schlüssel. Der öffentliche Schlüssel wird verwendet, um Nachrichten zu verschlüsseln, während der private Schlüssel für die Entschlüsselung erforderlich ist. Die Sicherheit von RSA beruht auf der Annahme, dass es praktisch unmöglich ist, den privaten Schlüssel aus dem öffentlichen Schlüssel zu berechnen, selbst wenn die verschlüsselte Nachricht und der öffentliche Schlüssel bekannt sind. Mathematisch wird RSA durch die Wahl von zwei großen Primzahlen ppp und qqq definiert, aus denen der Modulus n=p⋅qn = p \cdot qn=p⋅q und die Eulersche Totient-Funktion ϕ(n)=(p−1)(q−1)\phi(n) = (p-1)(q-1)ϕ(n)=(p−1)(q−1) abgeleitet werden. Die Wahl eines öffentlichen Exponenten eee, der teilerfremd zu ϕ(n)\phi(n)ϕ(n) ist, ermöglicht die Erstellung des Schlüsselpaares.