StudierendeLehrende

Hamilton-Jacobi-Bellman

Der Hamilton-Jacobi-Bellman (HJB) Ansatz ist eine fundamentale Methode in der optimalen Steuerungstheorie und der dynamischen Programmierung. Er basiert auf der Idee, dass die optimale Steuerung eines Systems durch die Minimierung einer Kostenfunktion über die Zeit erreicht wird. Der HJB-Ansatz formuliert das Problem in Form einer partiellen Differentialgleichung, die die optimalen Werte der Kostenfunktion in Abhängigkeit von den Zuständen des Systems beschreibt. Die grundlegende Gleichung lautet:

∂V∂t+min⁡u(L(x,u)+∂V∂xf(x,u))=0\frac{\partial V}{\partial t} + \min_{u} \left( L(x, u) + \frac{\partial V}{\partial x} f(x, u) \right) = 0∂t∂V​+umin​(L(x,u)+∂x∂V​f(x,u))=0

Hierbei ist V(x,t)V(x, t)V(x,t) die Wertfunktion, die die minimalen Kosten von einem Zustand xxx zum Zeitpunkt ttt beschreibt, L(x,u)L(x, u)L(x,u) die Kostenfunktion und f(x,u)f(x, u)f(x,u) die Dynamik des Systems. Die HJB-Gleichung ermöglicht es, die optimale Steuerung zu finden, indem man die Ableitung der Wertfunktion und die Kosten minimiert. Diese Methode findet Anwendung in vielen Bereichen, einschließlich Finanzwirtschaft, Robotik und Regelungstechnik.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Offenbartes Präferenzsystem

Das Konzept der Revealed Preference (auf Deutsch: enthüllte Präferenz) stammt aus der Mikroökonomie und beschreibt, wie die Präferenzen von Konsumenten aus ihren tatsächlichen Entscheidungen abgeleitet werden können. Die Grundannahme ist, dass die Wahl eines Konsumenten zwischen verschiedenen Gütern und Dienstleistungen seine Präferenzen widerspiegelt. Wenn ein Konsument zwischen zwei Gütern AAA und BBB wählt und sich für AAA entscheidet, wird angenommen, dass er AAA gegenüber BBB bevorzugt, was als enthüllte Präferenz bezeichnet wird.

Diese Theorie wird häufig verwendet, um das Verhalten von Konsumenten zu analysieren, ohne auf subjektive Umfragen oder Annahmen über ihre Präferenzen zurückzugreifen. Ein wichtiges Ergebnis dieser Theorie ist die Möglichkeit, Konsumentenauswahl zu modellieren und zu prognostizieren, indem man beobachtet, welche Güter in welchen Mengen gekauft werden. Dies ermöglicht eine objektive Analyse der Nachfrage und der Marktmechanismen.

Hahn-Banach-Satz

Das Hahn-Banach-Theorem ist ein zentrales Resultat in der Funktionalanalysis, das es ermöglicht, lineare Funktionale zu erweitern, ohne ihre Eigenschaften zu verletzen. Es besagt, dass wenn ein lineares Funktional fff auf einem Unterraum MMM eines normierten Raumes XXX definiert ist und fff eine bestimmte beschränkte Eigenschaft hat, dann kann fff auf den gesamten Raum XXX ausgedehnt werden, sodass die Beschränktheit erhalten bleibt.

Formal ausgedrückt, wenn f:M→Rf: M \to \mathbb{R}f:M→R (oder C\mathbb{C}C) linear ist und die Bedingung ∣f(x)∣≤C∥x∥|f(x)| \leq C \|x\|∣f(x)∣≤C∥x∥ für alle x∈Mx \in Mx∈M gilt, dann existiert ein lineares Funktional F:X→RF: X \to \mathbb{R}F:X→R (oder C\mathbb{C}C), das fff auf MMM entspricht und ebenfalls die gleiche Beschränktheit erfüllt:

∣F(x)∣≤C∥x∥fu¨r alle x∈X.|F(x)| \leq C \|x\| \quad \text{für alle } x \in X.∣F(x)∣≤C∥x∥fu¨r alle x∈X.

Das Theorem hat weitreichende Anwendungen in verschiedenen Bereichen der Mathematik, einschließlich der Funktionalanalysis,

Deep Brain Stimulation

Deep Brain Stimulation (DBS) ist ein neurochirurgisches Verfahren, das zur Behandlung verschiedener neurologischer Erkrankungen eingesetzt wird, darunter Parkinson-Krankheit, Dystonie und Tremor. Bei dieser Methode werden Elektroden in bestimmte Bereiche des Gehirns implantiert, um elektrische Impulse zu senden, die die neuronale Aktivität modulieren. Diese Impulse können dazu beitragen, die Symptome der Erkrankungen zu lindern, indem sie die abnormale Gehirnaktivität korrigieren. Die Geräte können individuell angepasst werden, was bedeutet, dass die Stimulationsparameter je nach den Bedürfnissen des Patienten verändert werden können. DBS wird häufig als Therapieoption in Erwägung gezogen, wenn andere Behandlungsformen wie Medikamente nicht ausreichend wirken. Es ist wichtig zu beachten, dass, obwohl DBS viele Patienten erheblich entlasten kann, es auch Risiken und potenzielle Nebenwirkungen gibt, die sorgfältig abgewogen werden müssen.

Kalman-Filter

Der Kalman Filter ist ein mathematisches Verfahren, das zur Schätzung des Zustands eines dynamischen Systems verwendet wird, das von Rauschen und Unsicherheiten betroffen ist. Er kombiniert Messdaten mit einem modellenbasierten Ansatz, um die beste Schätzung des Systemzustands zu liefern. Der Filter arbeitet in zwei Hauptschritten: dem Vorhersageschritt, in dem der zukünftige Zustand basierend auf dem aktuellen Zustand und dem Systemmodell geschätzt wird, und dem Aktualisierungsschritt, in dem diese Schätzung durch neue Messungen verfeinert wird.

Mathematisch wird der Zustand xkx_kxk​ des Systems zur Zeit kkk durch die Gleichung

xk=Axk−1+Buk+wkx_k = A x_{k-1} + B u_k + w_kxk​=Axk−1​+Buk​+wk​

beschrieben, wobei AAA die Zustandsübergangsmatrix, BBB die Steuerungsmatrix, uku_kuk​ die Steuerungseingaben und wkw_kwk​ das Prozessrauschen ist. Die Schätzung wird dann mit den Beobachtungen zkz_kzk​ aktualisiert, die durch

zk=Hxk+vkz_k = H x_k + v_kzk​=Hxk​+vk​

beschrieben werden, wobei HHH die Beobachtungsmatrix und vkv_kvk​ das Messrauschen darstellt. Der Kalman Filter findet breite Anwendung in verschiedenen Bereichen, darunter

Nachfragestimulation-Inflation

Demand-Pull Inflation tritt auf, wenn die Gesamtnachfrage nach Gütern und Dienstleistungen in einer Volkswirtschaft schneller wächst als das Angebot. Dies kann durch verschiedene Faktoren verursacht werden, wie zum Beispiel steigende Konsumausgaben, Investitionen oder staatliche Ausgaben. Wenn die Nachfrage das Angebot übersteigt, müssen Unternehmen ihre Preise erhöhen, um die Nachfrage zu dämpfen, was zu einer Inflation führt.

Ein klassisches Beispiel für Demand-Pull Inflation ist die Situation, wenn eine Regierung große Infrastrukturprojekte initiiert, was zu einer erhöhten Nachfrage nach Rohstoffen und Arbeitskräften führt. Ein weiteres Beispiel könnte eine expansive Geldpolitik sein, bei der die Zentralbank die Zinsen senkt, was die Kreditaufnahme und damit die Gesamtnachfrage anregt. Die resultierende Inflation kann in der Formel für die Inflationserwartungen wie folgt dargestellt werden:

Inflation=NachfrageAngebot×100\text{Inflation} = \frac{\text{Nachfrage}}{\text{Angebot}} \times 100Inflation=AngebotNachfrage​×100

Insgesamt ist Demand-Pull Inflation ein wichtiges Konzept, das die Dynamik zwischen Angebot und Nachfrage in einer Volkswirtschaft verdeutlicht.

Stackelberg-Duopol

Das Stackelberg-Duopol ist ein Modell der oligopolistischen Marktstruktur, das beschreibt, wie zwei Unternehmen (Duopolisten) in einem Markt interagieren, wenn eines der Unternehmen als Marktführer und das andere als Marktnachfolger agiert. Der Marktführer trifft zunächst seine Produktionsentscheidung, um seine Gewinnmaximierung zu maximieren, und der Marktnachfolger reagiert darauf, indem er seine eigene Produktionsmenge wählt, basierend auf der Entscheidung des Führers.

Die Hauptannahme in diesem Modell ist, dass der Marktführer seine Entscheidung mit dem Wissen trifft, dass der Nachfolger seine Menge als Reaktion auf die Menge des Führers anpassen wird. Dies führt zu einem strategischen Vorteil für den Marktführer, da er die Bewegungen des Nachfolgers antizipieren kann. Mathematisch lässt sich das Gleichgewicht durch die Reaktionsfunktionen der beiden Firmen beschreiben:

Q1=f(Q2)Q_1 = f(Q_2)Q1​=f(Q2​)

und

Q2=g(Q1)Q_2 = g(Q_1)Q2​=g(Q1​)

Hierbei ist Q1Q_1Q1​ die Menge des Marktführers und Q2Q_2Q2​ die Menge des Marktnachfolgers. Die resultierende Marktnachfrage und die Preisbildung ergeben sich aus der Gesamtmenge Q=Q1+Q2Q = Q_1 + Q_2Q=Q1​+Q2​, was zu unterschiedlichen Preispunkten führt,