StudierendeLehrende

K-Means Clustering

K-Means Clustering ist ein beliebter Algorithmus zur Gruppierung von Datenpunkten in Cluster, die anhand ihrer Ähnlichkeit definiert werden. Der Algorithmus funktioniert in mehreren Schritten: Zunächst wird eine vorgegebene Anzahl kkk von Clustern festgelegt, und zufällig werden kkk Datenpunkte als Ausgangszentren (Centroids) ausgewählt. Dann werden die restlichen Datenpunkte jedem Cluster zugewiesen, basierend auf der minimalen euklidischen Distanz zu den Centroids. Diese Zuweisung wird iterativ angepasst, indem die Centroids neu berechnet werden, bis die Positionen der Centroids stabil sind und sich nicht mehr signifikant ändern. Der Algorithmus zielt darauf ab, die Gesamtvarianz innerhalb der Cluster zu minimieren, was oft durch die Minimierung der Kostenfunktion erreicht wird, die wie folgt definiert ist:

J=∑i=1k∑xj∈Ci∥xj−μi∥2J = \sum_{i=1}^{k} \sum_{x_j \in C_i} \| x_j - \mu_i \|^2J=i=1∑k​xj​∈Ci​∑​∥xj​−μi​∥2

Hierbei ist μi\mu_iμi​ der Centroid des Clusters CiC_iCi​ und xjx_jxj​ sind die Datenpunkte innerhalb dieses Clusters. K-Means ist einfach zu implementieren und effizient, hat jedoch einige Einschränkungen, wie die Sensitivität gegenüber der Wahl von $ k

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Suffix-Array-Konstruktionsalgorithmen

Ein Suffix-Array ist eine Datenstruktur, die verwendet wird, um die Suffixe eines Strings in lexikographischer Reihenfolge zu speichern. Es ist besonders nützlich in der Textverarbeitung und bei Suchalgorithmen. Die Konstruktion eines Suffix-Arrays kann auf verschiedene Arten erfolgen, wobei die gängigsten Algorithmen die Naive Methode, Karkkainen-Sanders algorithm und Suffix-Array-Konstruktion basierend auf der Burrows-Wheeler-Transformation sind.

Die naive Methode hat eine Zeitkomplexität von O(n2log⁡n)O(n^2 \log n)O(n2logn), da sie alle Suffixe erzeugt, diese sortiert und dann die Indizes speichert. Effizientere Algorithmen wie der Karkkainen-Sanders-Algorithmus können die Konstruktion in O(n)O(n)O(n) oder O(nlog⁡n)O(n \log n)O(nlogn) erreichen, indem sie Techniken wie das Radixsort oder das Verketten von Suffixen nutzen. Suffix-Arrays sind besonders vorteilhaft, da sie im Vergleich zu anderen Datenstrukturen, wie z.B. Suffix-Bäumen, weniger Speicher benötigen und dennoch eine schnelle Suche ermöglichen.

Fama-French-Modell

Das Fama-French-Modell ist ein weit verbreitetes Asset-Pricing-Modell, das 1993 von den Finanzökonomen Eugene Fama und Kenneth French entwickelt wurde. Es erweitert das traditionelle Capital Asset Pricing Model (CAPM), indem es neben dem Marktrisiko auch zwei weitere Faktoren berücksichtigt: die Größe (Size) und die Wachstumsrate (Value) von Unternehmen.

Das Modell postuliert, dass Aktien von kleinen Unternehmen (Small Caps) tendenziell höhere Renditen erzielen als Aktien von großen Unternehmen (Large Caps), und dass Aktien mit niedrigem Kurs-Gewinn-Verhältnis (Value Stocks) bessere Renditen liefern als solche mit hohem Kurs-Gewinn-Verhältnis (Growth Stocks). Mathematisch lässt sich das Fama-French-Modell wie folgt darstellen:

Ri=Rf+βi(Rm−Rf)+s⋅SMB+h⋅HMLR_i = R_f + \beta_i (R_m - R_f) + s \cdot SMB + h \cdot HMLRi​=Rf​+βi​(Rm​−Rf​)+s⋅SMB+h⋅HML

Hierbei steht RiR_iRi​ für die erwartete Rendite eines Wertpapiers, RfR_fRf​ für den risikofreien Zinssatz, RmR_mRm​ für die Marktrendite, SMBSMBSMB (Small Minus Big) für die Renditedifferenz zwischen kleinen und großen Unternehmen und HMLHMLHML (High Minus Low) für die Renditedifferenz zwischen wertvollen und

Rf-Signalmodulationstechniken

Rf-Signalmodulationstechniken sind Verfahren, die verwendet werden, um Informationen über Hochfrequenzsignale (RF) zu übertragen. Bei der Modulation wird ein Trägersignal verändert, um die gewünschten Informationen in Form von Amplitude, Frequenz oder Phase zu codieren. Die häufigsten Modulationstechniken sind:

  • Amplitude Modulation (AM): Hierbei wird die Amplitude des Trägersignals variiert, während die Frequenz konstant bleibt. Diese Technik ist einfach, hat jedoch eine geringere Effizienz und ist anfällig für Störungen.

  • Frequency Modulation (FM): Bei dieser Methode wird die Frequenz des Trägersignals verändert, um Informationen zu übertragen. FM bietet eine bessere Klangqualität und ist weniger anfällig für Störungen, wird jedoch in der Regel für höhere Frequenzen verwendet.

  • Phase Modulation (PM): Diese Technik verändert die Phase des Trägersignals, um die Informationen zu übertragen. Sie ist besonders nützlich in digitalen Kommunikationssystemen.

Die Wahl der Modulationstechnik hängt von verschiedenen Faktoren ab, einschließlich der gewünschten Übertragungsreichweite, der Bandbreite, der Signalqualität und der Umgebungsbedingungen.

Dünnschichtinterferenzbeschichtungen

Thin Film Interference Coatings sind spezielle Beschichtungen, die auf der Interferenz von Licht basieren, das durch dünne Schichten von Materialien reflektiert und gebrochen wird. Diese Beschichtungen bestehen typischerweise aus mehreren Schichten mit unterschiedlichen Brechungsindizes, die so gestaltet sind, dass sie das Licht auf bestimmte Weise manipulieren. Wenn Licht auf die dünne Schicht trifft, wird ein Teil des Lichts an der oberen Oberfläche und ein Teil an der unteren Oberfläche reflektiert. Die beiden Lichtwellen können miteinander interferieren, was zu verstärkten oder ausgelöschten Lichtintensitäten führt, abhängig von der Wellenlänge des Lichts und der Dicke der Schichten.

Mathematisch wird die Bedingung für konstruktive Interferenz durch die Gleichung

2nd=mλ2 n d = m \lambda2nd=mλ

beschrieben, wobei nnn der Brechungsindex, ddd die Dicke der Schicht, mmm eine ganze Zahl (Ordnung der Interferenz) und λ\lambdaλ die Wellenlänge des Lichts ist. Diese Technologie findet Anwendung in verschiedenen Bereichen wie der Optik, um Antireflektionsbeschichtungen, Spiegel oder Filter zu erstellen. Die gezielte Kontrolle der Schichtdicken und -materialien ermöglicht es, spezifische optische Eigenschaften zu erzielen,

Porters 5 Kräfte

Das Modell von Porter's 5 Forces ist ein strategisches Werkzeug, das Unternehmen dabei hilft, die Wettbewerbsbedingungen ihrer Branche zu analysieren. Es identifiziert fünf wesentliche Kräfte, die die Wettbewerbsintensität und damit die Rentabilität eines Marktes beeinflussen:

  1. Bedrohung durch neue Wettbewerber: Neue Unternehmen, die in den Markt eintreten wollen, können den Wettbewerb erhöhen und bestehende Unternehmen unter Druck setzen. Faktoren wie Eintrittsbarrieren, Kapitalanforderungen und Markentreue spielen hier eine Rolle.

  2. Verhandlungsmacht der Lieferanten: Starke Lieferanten können die Preise erhöhen oder die Qualität der Produkte beeinflussen. Dies geschieht häufig in Branchen mit wenigen Lieferanten oder wenn die Rohstoffe einzigartig sind.

  3. Verhandlungsmacht der Käufer: Wenn Kunden viele Alternativen haben, können sie höhere Anforderungen stellen und niedrigere Preise fordern. Die Käufermacht ist besonders hoch, wenn die Produkte wenig differenziert sind.

  4. Bedrohung durch Ersatzprodukte: Produkte oder Dienstleistungen, die die gleichen Bedürfnisse erfüllen, können bestehende Unternehmen unter Druck setzen. Die Verfügbarkeit und Attraktivität dieser Alternativen beeinflussen die Marktlandschaft erheblich.

  5. Wettbewerbsrivalität innerhalb der Branche: Hochintensiver Wettbewerb zwischen bestehenden Unternehmen kann zu Preiskriegen und erhöhten Marketingausgaben führen. Faktoren

Stackelberg-Duopol

Das Stackelberg-Duopol ist ein Modell der oligopolistischen Marktstruktur, das beschreibt, wie zwei Unternehmen (Duopolisten) in einem Markt interagieren, wenn eines der Unternehmen als Marktführer und das andere als Marktnachfolger agiert. Der Marktführer trifft zunächst seine Produktionsentscheidung, um seine Gewinnmaximierung zu maximieren, und der Marktnachfolger reagiert darauf, indem er seine eigene Produktionsmenge wählt, basierend auf der Entscheidung des Führers.

Die Hauptannahme in diesem Modell ist, dass der Marktführer seine Entscheidung mit dem Wissen trifft, dass der Nachfolger seine Menge als Reaktion auf die Menge des Führers anpassen wird. Dies führt zu einem strategischen Vorteil für den Marktführer, da er die Bewegungen des Nachfolgers antizipieren kann. Mathematisch lässt sich das Gleichgewicht durch die Reaktionsfunktionen der beiden Firmen beschreiben:

Q1=f(Q2)Q_1 = f(Q_2)Q1​=f(Q2​)

und

Q2=g(Q1)Q_2 = g(Q_1)Q2​=g(Q1​)

Hierbei ist Q1Q_1Q1​ die Menge des Marktführers und Q2Q_2Q2​ die Menge des Marktnachfolgers. Die resultierende Marktnachfrage und die Preisbildung ergeben sich aus der Gesamtmenge Q=Q1+Q2Q = Q_1 + Q_2Q=Q1​+Q2​, was zu unterschiedlichen Preispunkten führt,