StudierendeLehrende

Möbius Transformation

Eine Möbius-Transformation, auch bekannt als lineare Bruchtransformation, ist eine spezielle Art von Funktion, die in der komplexen Analysis von Bedeutung ist. Sie hat die allgemeine Form

f(z)=az+bcz+df(z) = \frac{az + b}{cz + d}f(z)=cz+daz+b​

wobei a,b,c,da, b, c, da,b,c,d komplexe Zahlen sind und ad−bc≠0ad - bc \neq 0ad−bc=0. Diese Transformationen sind bijektiv und transformieren den komplexen Zahlenbereich auf sich selbst, was bedeutet, dass sie eine Eins-zu-Eins-Beziehung zwischen Punkten im komplexen Raum herstellen. Möbius-Transformationen erhalten die Eigenschaften des Kreises und der Geraden, was sie nützlich für Anwendungen in der Geometrie und der Funktionalanalysis macht. Wichtige Eigenschaften sind, dass sie die Form von Linien und Kreisen beibehalten und die sogenannten idealen Punkte (Punkte im Unendlichen) behandeln können. Sie finden auch Anwendung in verschiedenen Bereichen wie der Physik, der Ingenieurwissenschaft und der Computergrafik.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Shapley-Wert

Der Shapley Value ist ein Konzept aus der kooperativen Spieltheorie, das zur Verteilung von Gewinnen oder Verlusten unter den Mitgliedern einer Koalition verwendet wird. Er wurde von Lloyd Shapley entwickelt und basiert auf der Idee, dass jeder Spieler einen bestimmten Beitrag zum Gesamtergebnis leistet. Der Shapley Value berücksichtigt nicht nur den individuellen Beitrag eines Spielers, sondern auch, wie dieser Beitrag in verschiedenen Koalitionen zum Tragen kommt.

Mathematisch wird der Shapley Value für einen Spieler iii in einer Koalition durch die Formel

ϕi(v)=∑S⊆N∖{i}∣S∣!⋅(∣N∣−∣S∣−1)!∣N∣!⋅(v(S∪{i})−v(S))\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} \frac{|S|! \cdot (|N| - |S| - 1)!}{|N|!} \cdot (v(S \cup \{i\}) - v(S))ϕi​(v)=S⊆N∖{i}∑​∣N∣!∣S∣!⋅(∣N∣−∣S∣−1)!​⋅(v(S∪{i})−v(S))

definiert, wobei NNN die Menge aller Spieler ist und v(S)v(S)v(S) den Wert der Koalition SSS darstellt. Der Shapley Value hat zahlreiche Anwendungen in verschiedenen Bereichen, wie z.B. der Wirtschaft, der Politik und der Verteilung von Ressourcen, da er faire und rationale Entscheidungsfindungen fördert.

Wavelet-Transformation

Die Wavelet-Transformation ist ein mathematisches Verfahren, das zur Analyse von Signalen und Daten verwendet wird. Sie ermöglicht es, ein Signal in verschiedene Frequenzkomponenten zu zerlegen, während gleichzeitig die zeitliche Lokalisierung beibehalten wird. Im Gegensatz zur klassischen Fourier-Transformation, die nur die Frequenzinformationen liefert, ermöglicht die Wavelet-Transformation eine mehrdimensionale Analyse, indem sie sowohl die Frequenz als auch die Zeit berücksichtigt.

Die Wavelet-Transformation verwendet sogenannte Wavelets, die kleine Wellenformen sind, die sich über die Zeit und Frequenz verändern lassen. Diese Wavelets werden auf das Signal angewendet, um die Koeffizienten zu berechnen, die die Stärke der Frequenzen zu verschiedenen Zeiten repräsentieren. Mathematisch kann die kontinuierliche Wavelet-Transformation eines Signals f(t)f(t)f(t) durch die Formel

W(a,b)=1a∫−∞∞f(t)ψ(t−ba)dtW(a, b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f(t) \psi\left(\frac{t-b}{a}\right) dtW(a,b)=a​1​∫−∞∞​f(t)ψ(at−b​)dt

beschrieben werden, wobei ψ\psiψ das gewählte Wavelet, aaa die Skala und bbb die Zeitverschiebung ist. Diese Transformation findet Anwendung in vielen Bereichen, wie z.B. in der Bildverarbeitung, der Signalverarbeitung und der Datenkompression

Graph-Isomorphismus

Der Begriff Graph Isomorphism bezieht sich auf die Beziehung zwischen zwei Graphen, bei der es eine Eins-zu-eins-Zuordnung der Knoten eines Graphen zu den Knoten eines anderen Graphen gibt, sodass die Struktur beider Graphen identisch bleibt. Das bedeutet, dass, wenn zwei Graphen isomorph sind, sie die gleiche Anzahl von Knoten und Kanten besitzen und die Verbindungen zwischen den Knoten (die Kanten) gleich sind, nur die Benennung der Knoten kann unterschiedlich sein. Mathematisch ausgedrückt, sind zwei Graphen G1=(V1,E1)G_1 = (V_1, E_1)G1​=(V1​,E1​) und G2=(V2,E2)G_2 = (V_2, E_2)G2​=(V2​,E2​) isomorph, wenn es eine bijektive Funktion f:V1→V2f: V_1 \to V_2f:V1​→V2​ gibt, sodass für alle u,v∈V1u, v \in V_1u,v∈V1​ gilt:

{u,v}∈E1  ⟺  {f(u),f(v)}∈E2.\{u, v\} \in E_1 \iff \{f(u), f(v)\} \in E_2.{u,v}∈E1​⟺{f(u),f(v)}∈E2​.

Das Problem des Graph-Isomorphismus ist von großer Bedeutung in verschiedenen Bereichen, einschließlich der Chemie, wo die Struktur von Molekülen als Graphen dargestellt werden kann, und in der Informatik, insbesondere in der Komplexitätstheorie. Trotz seines scheinbar einfachen Charakters ist es bisher nicht bekannt

Transkranielle Magnetstimulation

Transkranielle Magnetstimulation (TMS) ist ein nicht-invasives Verfahren, das magnetische Felder nutzt, um neuronale Aktivität im Gehirn zu beeinflussen. Bei der TMS wird eine Spule auf die Kopfhaut platziert, durch die ein kurzer, starker elektrischer Impuls erzeugt wird. Dieser Impuls erzeugt ein Magnetfeld, das in das Gehirn eindringt und dort gezielt Nervenzellen stimuliert oder hemmt. TMS wird häufig in der Forschung und zunehmend auch in der klinischen Praxis eingesetzt, insbesondere zur Behandlung von Depressionen, Angststörungen und chronischen Schmerzen. Die Behandlung ist schmerzfrei und hat in der Regel nur wenige Nebenwirkungen, was sie zu einer attraktiven Option für Patienten macht, die auf herkömmliche Therapien nicht ansprechen.

Schuldenrestrukturierung

Debt Restructuring bezeichnet den Prozess, durch den ein Schuldner (sei es ein Unternehmen oder eine Einzelperson) seine bestehenden Schulden neu organisiert, um die Rückzahlung zu erleichtern. Dies kann durch verschiedene Maßnahmen erfolgen, wie z.B. Zinsreduzierung, Laufzeitverlängerung oder sogar den Verzicht auf einen Teil der Schulden. Ziel dieser Restrukturierung ist es, die finanzielle Belastung zu verringern und eine Insolvenz zu vermeiden. Häufig wird sie in Zeiten finanzieller Schwierigkeiten oder wirtschaftlicher Unsicherheit in Anspruch genommen. Ein erfolgreiches Debt Restructuring kann sowohl dem Schuldner als auch den Gläubigern helfen, indem es eine tragfähige Lösung bietet, die die Rückzahlung der Schulden fördert und den Wert der verbleibenden Vermögenswerte erhält.

Binomialmodell

Das Binomial Pricing ist ein Modell zur Bewertung von Finanzderivaten, insbesondere Optionen. Es basiert auf der Annahme, dass der Preis eines Basiswerts in diskreten Zeitintervallen entweder steigt oder fällt, wodurch ein binomialer Baum entsteht. In jedem Schritt des Modells wird der Preis des Basiswerts um einen bestimmten Faktor uuu (bei Anstieg) und um einen anderen Faktor ddd (bei Fall) verändert.

Die Wahrscheinlichkeiten für den Anstieg und den Fall werden oft als ppp und 1−p1-p1−p definiert. Um den aktuellen Wert einer Option zu berechnen, wird die erwartete Auszahlung in der Zukunft unter Berücksichtigung dieser Wahrscheinlichkeiten diskontiert. Der Vorteil des Binomialmodells liegt in seiner Flexibilität, da es für verschiedene Arten von Optionen und sogar für komplizierte Derivate angewendet werden kann. In der Praxis wird das Modell häufig genutzt, um den Preis von europäischen und amerikanischen Optionen zu bestimmen.