StudierendeLehrende

Navier-Stokes

Die Navier-Stokes-Gleichungen sind ein Satz von partiellen Differentialgleichungen, die die Bewegung von fluiden Materialien, wie Flüssigkeiten und Gasen, beschreiben. Sie basieren auf den Grundprinzipien der Erhaltung von Masse, Energie und Impuls. Die Gleichungen berücksichtigen sowohl die Viskosität des Fluids als auch externe Kräfte, wie Druck und Schwerkraft. Mathematisch ausgedrückt, können die Gleichungen in der Form:

ρ(∂u∂t+u⋅∇u)=−∇p+μ∇2u+f\rho \left( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}ρ(∂t∂u​+u⋅∇u)=−∇p+μ∇2u+f

geschrieben werden, wobei ρ\rhoρ die Dichte des Fluids, u\mathbf{u}u die Geschwindigkeit, ppp den Druck, μ\muμ die Viskosität und f\mathbf{f}f externe Kräfte darstellt. Diese Gleichungen sind von zentraler Bedeutung in der Strömungsmechanik und finden Anwendung in verschiedenen Bereichen wie Meteorologie, Ozeanographie und Ingenieurwesen. Die Lösung der Navier-Stokes-Gleichungen ist jedoch oft sehr komplex und in vielen Fällen noch nicht vollständig verstanden, was sie zu einem

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Bessel-Funktionen

Bessel-Funktionen sind eine Familie von Lösungen zu Bessels Differentialgleichung, die häufig in verschiedenen Bereichen der Physik und Ingenieurwissenschaften auftreten, insbesondere in Problemen mit zylindrischer Symmetrie. Diese Funktionen werden typischerweise durch die Beziehung definiert:

x2d2ydx2+xdydx+(x2−n2)y=0x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - n^2)y = 0x2dx2d2y​+xdxdy​+(x2−n2)y=0

wobei nnn eine Konstante ist, die die Ordnung der Bessel-Funktion bestimmt. Die am häufigsten verwendeten Bessel-Funktionen sind die ersten und zweiten Arten, bezeichnet als Jn(x)J_n(x)Jn​(x) und Yn(x)Y_n(x)Yn​(x). Bessel-Funktionen finden Anwendung in vielen Bereichen wie der Akustik, Elektromagnetik und Wärmeleitung, da sie die physikalischen Eigenschaften von Wellen und Schwingungen in zylindrischen Koordinatensystemen beschreiben. Ihre Eigenschaften, wie Orthogonalität und die Möglichkeit, durch Reihenentwicklungen dargestellt zu werden, machen sie zu einem wichtigen Werkzeug in der mathematischen Physik.

Protein-Docking-Algorithmen

Protein Docking Algorithms sind rechnergestützte Methoden, die dazu dienen, die Wechselwirkungen zwischen zwei oder mehr Proteinen oder zwischen einem Protein und einem kleinen Molekül (Ligand) vorherzusagen. Diese Algorithmen sind entscheidend für das Verständnis biologischer Prozesse und die Drug-Design-Entwicklung. Sie arbeiten typischerweise in zwei Hauptphasen: Binding Site Prediction, wo mögliche Bindungsstellen identifiziert werden, und Binding Affinity Estimation, wo die Stärke der Bindung zwischen den Molekülen bewertet wird.

Die Algorithmen verwenden oft Molekulare Dynamik und Monte-Carlo-Methoden, um verschiedene Konformationen und Orientierungen der Moleküle zu simulieren. Zudem werden physikalische und chemische Eigenschaften wie die elektrostatistischen Wechselwirkungen und die Hydrophobizität berücksichtigt, um die energetisch günstigsten Docking-Positionen zu ermitteln. Eine gängige mathematische Darstellung für die Wechselwirkungsenergie ist die Formel:

Etotal=Evan der Waals+Eelektrostatik+EbindungsenergieE_{\text{total}} = E_{\text{van der Waals}} + E_{\text{elektrostatik}} + E_{\text{bindungsenergie}}Etotal​=Evan der Waals​+Eelektrostatik​+Ebindungsenergie​

Diese Ansätze helfen Wissenschaftlern, die Struktur-Wirkungs-Beziehungen von Biomolekülen besser zu verstehen und gezielte therapeutische Interventionen zu entwickeln.

De Rham-Kohomologie

Die De Rham-Kohomologie ist ein Konzept aus der Differentialgeometrie und der algebraischen Topologie, das sich mit den Eigenschaften von differenzierbaren Mannigfaltigkeiten beschäftigt. Sie nutzt die Theorie der Differentialformen, um topologische Invarianten zu definieren. Eine Differentialform ist eine Funktion, die auf einem Mannigfaltigkeit definiert ist und die Ableitung einer Funktion darstellt. Die De Rham-Kohomologie gruppiert diese Formen in Äquivalenzklassen, die durch den Äußeren Differential ddd bestimmt werden.

Die Kohomologiegruppen HdRk(M)H^k_{\text{dR}}(M)HdRk​(M) einer Mannigfaltigkeit MMM sind definiert als die Quotienten von geschlossenen Formen (d.h. dω=0d\omega = 0dω=0) und genullten Formen (d.h. ω=dη\omega = d\etaω=dη für eine andere Form η\etaη). Mathematisch ausgedrückt:

HdRk(M)=Ker(d:Ωk(M)→Ωk+1(M))Bild(d:Ωk−1(M)→Ωk(M))H^k_{\text{dR}}(M) = \frac{\text{Ker}(d: \Omega^k(M) \to \Omega^{k+1}(M))}{\text{Bild}(d: \Omega^{k-1}(M) \to \Omega^k(M))}HdRk​(M)=Bild(d:Ωk−1(M)→Ωk(M))Ker(d:Ωk(M)→Ωk+1(M))​

Diese Struktur ermöglicht es, Informationen über die topologische Struktur von $

Riemannsche Abbildungssatz

Das Riemann Mapping Theorem ist ein zentrales Resultat in der komplexen Analysis, das besagt, dass jede einfach zusammenhängende, offene Teilmenge der komplexen Ebene, die nicht die gesamte Ebene ist, konform auf die Einheitsscheibe abgebildet werden kann. Dies bedeutet, dass es eine bijektive, holomorphe Funktion gibt, die diese beiden Bereiche miteinander verbindet. Formal ausgedrückt, für eine einfach zusammenhängende Gebiet D⊂CD \subset \mathbb{C}D⊂C existiert eine bijektive Funktion f:D→Df: D \to \mathbb{D}f:D→D (die Einheitsscheibe) und fff ist holomorph sowie hat eine holomorphe Umkehrfunktion.

Ein wichtiger Aspekt des Theorems ist, dass diese Abbildung nicht nur topologisch, sondern auch bezüglich der Winkel (konform) ist, was bedeutet, dass lokale Winkel zwischen Kurven beibehalten werden. Die Bedeutung des Riemann Mapping Theorems erstreckt sich über zahlreiche Anwendungen in der Mathematik, insbesondere in der Funktionentheorie und der geometrischen Analyse. Es zeigt auch die tiefen Verbindungen zwischen verschiedenen Bereichen der Mathematik, indem es die Struktur der komplexen Ebenen und ihrer Teilmengen untersucht.

Kaldor'sche Fakten

Kaldor’s Facts sind eine Reihe von empirischen Beobachtungen, die der britische Ökonom Nicholas Kaldor in den 1960er Jahren formulierte, um die Beziehung zwischen Wirtschaftswachstum und Produktionsfaktoren zu erklären. Diese Fakten besagen, dass in den meisten entwickelten Volkswirtschaften bestimmte Muster im Wachstum von Kapital und Arbeit beobachtet werden können. Zu den zentralen Punkten gehören:

  1. Kapitalintensität: Das Verhältnis von Kapital zu Arbeit in der Produktion bleibt relativ konstant über längere Zeiträume.
  2. Wachstumsrate des Outputs: Die Wachstumsrate des Produktionsoutputs ist tendenziell höher als die Wachstumsrate der Arbeitskräfte.
  3. Erträge: Die Erträge aus Kapital und Arbeit sind in der Regel konstant, was bedeutet, dass zusätzliche Einheiten von Kapital oder Arbeit nicht zu einem proportionalen Anstieg des Outputs führen.

Diese Beobachtungen legen nahe, dass technologische Fortschritte und die Effizienzsteigerung eine entscheidende Rolle für das Wirtschaftswachstum spielen. Kaldor’s Facts sind somit ein wichtiges Konzept, um die Dynamik moderner Volkswirtschaften besser zu verstehen und zu analysieren.

Dünnschichtinterferenzbeschichtungen

Thin Film Interference Coatings sind spezielle Beschichtungen, die auf der Interferenz von Licht basieren, das durch dünne Schichten von Materialien reflektiert und gebrochen wird. Diese Beschichtungen bestehen typischerweise aus mehreren Schichten mit unterschiedlichen Brechungsindizes, die so gestaltet sind, dass sie das Licht auf bestimmte Weise manipulieren. Wenn Licht auf die dünne Schicht trifft, wird ein Teil des Lichts an der oberen Oberfläche und ein Teil an der unteren Oberfläche reflektiert. Die beiden Lichtwellen können miteinander interferieren, was zu verstärkten oder ausgelöschten Lichtintensitäten führt, abhängig von der Wellenlänge des Lichts und der Dicke der Schichten.

Mathematisch wird die Bedingung für konstruktive Interferenz durch die Gleichung

2nd=mλ2 n d = m \lambda2nd=mλ

beschrieben, wobei nnn der Brechungsindex, ddd die Dicke der Schicht, mmm eine ganze Zahl (Ordnung der Interferenz) und λ\lambdaλ die Wellenlänge des Lichts ist. Diese Technologie findet Anwendung in verschiedenen Bereichen wie der Optik, um Antireflektionsbeschichtungen, Spiegel oder Filter zu erstellen. Die gezielte Kontrolle der Schichtdicken und -materialien ermöglicht es, spezifische optische Eigenschaften zu erzielen,