StudierendeLehrende

Polar Codes

Polar Codes sind eine Klasse von Error-Correcting Codes, die erstmals von Erdal Arikan im Jahr 2008 eingeführt wurden. Sie basieren auf dem Konzept der Polarisierung von Kanälen, bei dem die Fähigkeit eines Kommunikationskanals zur Übertragung von Informationen in hochqualitative und niedrigqualitative Teile unterteilt wird. Polar Codes sind besonders bemerkenswert, da sie die Shannon-Grenze erreichen können, was bedeutet, dass sie asymptotisch die maximale Datenübertragungsrate eines Kanals ohne Fehler erreichen, wenn die Code-Länge gegen unendlich geht.

Ein zentraler Bestandteil der Polar Codes ist der Polarisierungsprozess, der durch eine rekursive Konstruktion von Kanälen erfolgt, typischerweise unter Verwendung von Matrixmultiplikationen. Die Codierung erfolgt durch die Wahl der besten Kanäle, die die meisten Informationen übertragen können, während die weniger geeigneten Kanäle ignoriert werden. Die Dekodierung erfolgt in der Regel durch das Successive Cancellation (SC) Verfahren, das effizient und einfach zu implementieren ist. Polar Codes finden Anwendung in modernen Kommunikationssystemen, einschließlich 5G-Netzwerken, aufgrund ihrer hervorragenden Leistungsfähigkeit und Effizienz.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Riemann-Integral

Das Riemann Integral ist ein fundamentales Konzept in der Analysis, das verwendet wird, um die Fläche unter einer Kurve zu bestimmen. Es basiert auf der Idee, eine Funktion fff über ein Intervall [a,b][a, b][a,b] zu approximieren, indem man das Intervall in kleine Teilintervalle zerlegt. Für jedes Teilintervall wird der Funktionswert an einem bestimmten Punkt (z. B. dem linken Ende, dem rechten Ende oder dem Mittelwert) genommen und mit der Breite des Teilintervalls multipliziert. Die Summe dieser Produkte über alle Teilintervalle ergibt die Riemann-Summe:

Rn=∑i=1nf(xi∗)ΔxiR_n = \sum_{i=1}^{n} f(x_i^*) \Delta x_iRn​=i=1∑n​f(xi∗​)Δxi​

Wenn die Breite der Teilintervalle gegen 0 geht und die Anzahl der Teilintervalle gegen unendlich steigt, konvergiert die Riemann-Summe zu dem Riemann-Integral:

∫abf(x) dx\int_a^b f(x) \, dx∫ab​f(x)dx

Das Riemann Integral ist besonders nützlich in der Physik und Technik, um physikalische Größen wie Flächen, Volumina und Arbeit zu berechnen. Es ist jedoch wichtig zu beachten, dass nicht alle Funktionen Riemann-integrierbar sind, insbesondere wenn sie zu viele Unstetigkeitsstellen aufweisen.

Trie-Kompression

Trie Compression, auch als komprimierter Trie bekannt, ist eine effiziente Datenstruktur zur Speicherung von Zeichenfolgen oder Wörtern, die die redundante Speicherung gemeinsamer Präfixe vermeidet. In einem herkömmlichen Trie wird jeder Knoten durch ein einzelnes Zeichen dargestellt, was zu einer großen Anzahl von Knoten führt, insbesondere wenn viele Wörter ähnliche Präfixe haben. Bei der Trie Compression werden anstelle von einzelnen Zeichen ganze Sequenzen von Zeichen in einem Knoten zusammengefasst, wodurch die Anzahl der Knoten verringert und der Speicherbedarf reduziert wird.

Diese Technik ermöglicht eine schnellere Suche, da weniger Knoten durchlaufen werden müssen. Die komprimierte Struktur ist besonders nützlich in Anwendungen wie der Autovervollständigung oder der Suche nach Wörtern in großen Wörternschätzen, da sie sowohl Platz als auch Zeit spart. Insgesamt verbessert Trie Compression die Effizienz von Algorithmen, die auf der Trie-Datenstruktur basieren, indem sie die Zeitkomplexität der Suchoperationen optimiert.

Heap-Allokation

Heap Allocation ist ein Verfahren zur dynamischen Zuweisung von Speicher in einem Computerprogramm. Im Gegensatz zur statischen Zuweisung, bei der die Größe des Speichers zur Compile-Zeit festgelegt wird, ermöglicht die Heap Allocation, dass Programme während ihrer Laufzeit Speicher anfordern und freigeben. Dies geschieht in der Regel durch Funktionen wie malloc oder new in C und C++. Der Speicher wird im sogenannten Heap verwaltet, einem speziellen Bereich des Arbeitsspeichers, der für dynamische Speicheroperationen reserviert ist.

Vorteile der Heap Allocation sind die Flexibilität und die Möglichkeit, große Datenmengen zu verwalten, die zur Compile-Zeit unbekannt sind. Allerdings kann sie auch zu Fragmentierung führen und erfordert eine sorgfältige Verwaltung, um Speicherlecks zu vermeiden, wenn nicht mehr benötigter Speicher nicht wieder freigegeben wird.

Superelastisches Verhalten

Superelasticität beschreibt das Phänomen, bei dem bestimmte Materialien, insbesondere bestimmte Legierungen wie Nickel-Titan (NiTi), in der Lage sind, sich bei Verformung elastisch zurückzuziehen, ohne bleibende Deformation zu erfahren. Dies geschieht, wenn die Materialien unter hohen Spannungen stehen, die über ihre elastische Grenze hinausgehen, jedoch innerhalb eines bestimmten Temperaturbereichs, der oft als martensitische Transformation bezeichnet wird. Bei dieser Transformation kann das Material in eine andere kristalline Struktur übergehen, die eine hohe Deformationsfähigkeit aufweist.

Der Prozess ist reversibel, was bedeutet, dass das Material nach der Entlastung wieder in seine ursprüngliche Form zurückkehrt. Mathematisch wird dies oft durch die Beziehung zwischen Spannung (σ\sigmaσ) und Dehnung (ϵ\epsilonϵ) beschrieben, wobei die Spannung nicht linear auf die Dehnung reagiert. Dies ermöglicht Anwendungen in der Medizintechnik, wie zum Beispiel in stents oder dentalklammern, wo eine hohe Flexibilität und Formgedächtnis-Fähigkeit erforderlich sind.

Crispr-Gentechnik

Crispr Gene Editing ist eine revolutionäre Methode zur gezielten Veränderung von DNA in lebenden Organismen. Diese Technik basiert auf einem natürlichen Abwehrmechanismus von Bakterien, die DNA-Sequenzen nutzen, um sich gegen Viren zu verteidigen. Bei der Anwendung von Crispr wird ein spezifisches RNA-Molekül, das als Guide RNA bezeichnet wird, verwendet, um die Ziel-DNA zu finden, während ein Enzym namens Cas9 als „Schere“ dient, um den DNA-Strang an der gewünschten Stelle zu schneiden. Diese gezielten Schnitte ermöglichen es Wissenschaftlern, Gene zu deaktivieren, zu ersetzen oder sogar neue Gene einzufügen. Die Vielseitigkeit und Genauigkeit des Crispr-Systems haben es zu einem wichtigen Werkzeug in der Genforschung, der Medizin und der Landwirtschaft gemacht. Insgesamt bietet Crispr enorme Potenziale für die Heilung von genetischen Erkrankungen und die Verbesserung von Nutzpflanzen.

Bohr-Magneton

Das Bohr Magneton ist eine physikalische Konstante, die die magnetischen Eigenschaften von Elektronen beschreibt. Es wird als Maßeinheit für den magnetischen Moment eines Elektrons in einem Atom verwendet und ist besonders wichtig in der Atomphysik und der Quantenmechanik. Das Bohr Magneton wird durch die folgende Formel definiert:

μB=eℏ2me\mu_B = \frac{e \hbar}{2m_e}μB​=2me​eℏ​

Hierbei steht eee für die Elementarladung, ℏ\hbarℏ für das reduzierte Plancksche Wirkungsquantum und mem_eme​ für die Masse des Elektrons. Der Wert des Bohr Magnetons beträgt etwa 9.274×10−24 J/T9.274 \times 10^{-24} \, \text{J/T}9.274×10−24J/T (Joule pro Tesla). Das Bohr Magneton ist entscheidend für das Verständnis von Phänomenen wie dem Zeeman-Effekt, bei dem sich die Energieniveaus eines Atoms in einem Magnetfeld aufspalten.