StudierendeLehrende

Sharpe Ratio

Die Sharpe Ratio ist eine Kennzahl, die verwendet wird, um die Rendite eines Investments im Verhältnis zu seinem Risiko zu bewerten. Sie wird berechnet, indem die Überrendite eines Portfolios (d.h. die Rendite über den risikofreien Zinssatz hinaus) durch die Standardabweichung der Renditen des Portfolios geteilt wird. Die Formel lautet:

S=Rp−RfσpS = \frac{R_p - R_f}{\sigma_p}S=σp​Rp​−Rf​​

Hierbei ist SSS die Sharpe Ratio, RpR_pRp​ die Rendite des Portfolios, RfR_fRf​ der risikofreie Zinssatz und σp\sigma_pσp​ die Standardabweichung der Portfolio-Renditen. Eine höhere Sharpe Ratio deutet darauf hin, dass das Investment im Verhältnis zu seinem Risiko eine bessere Rendite erzielt. Im Allgemeinen wird eine Sharpe Ratio von über 1 als gut angesehen, während Werte über 2 als sehr gut gelten.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Mahler-Maß

Die Mahler Measure ist ein Konzept aus der algebraischen Geometrie und der Zahlentheorie, das zur Quantifizierung der Komplexität von Polynomen verwendet wird. Sie ist definiert für ein gegebenes mehrvariables Polynom P(x1,x2,…,xn)P(x_1, x_2, \ldots, x_n)P(x1​,x2​,…,xn​) und wird mathematisch als

M(P)=∏i=1nmax⁡(1,∣ai∣)M(P) = \prod_{i=1}^{n} \max(1, |a_i|) M(P)=i=1∏n​max(1,∣ai​∣)

beschrieben, wobei aia_iai​ die Koeffizienten des Polynoms sind. Die Mahler Measure misst dabei nicht nur den Betrag der Koeffizienten, sondern berücksichtigt auch die maximalen Werte, um eine Art "Volumen" im Koeffizientenraum zu erfassen. Diese Maßzahl hat bedeutende Anwendungen in der Diophantischen Geometrie, da sie hilft, die Größe und die Wurzeln von Polynomen zu charakterisieren. Zudem spielt die Mahler Measure eine Rolle in der Untersuchung von transzendentalen Zahlen und der arithmetischen Geometrie.

Terahertz-Spektroskopie

Terahertz-Spektroskopie ist eine analytische Methode, die elektromagnetische Strahlung im Terahertz-Bereich (0,1 bis 10 THz) nutzt, um die physikalischen und chemischen Eigenschaften von Materialien zu untersuchen. Diese Technik ermöglicht es, die Schwingungs- und Rotationsmodi von Molekülen zu erfassen, die in vielen organischen und anorganischen Substanzen vorkommen. Ein wesentlicher Vorteil der Terahertz-Spektroskopie ist ihre Fähigkeit, nicht-invasive Analysen durchzuführen, was sie in der Materialwissenschaft, Biomedizin und Sicherheitstechnik besonders wertvoll macht.

Die Spektraldaten können verwendet werden, um Informationen über die molekulare Struktur, die Konzentration von chemischen Verbindungen und sogar die Temperaturabhängigkeit von Materialien zu erhalten. In der Terahertz-Spektroskopie werden häufig Methoden wie die Zeitbereichs- oder Frequenzbereichsspektroskopie eingesetzt, um hochauflösende Messungen zu erzielen.

Fredholmsche Integralgleichung

Die Fredholm-Integralgleichung ist eine spezielle Form von Integralgleichungen, die in der Mathematik und ihren Anwendungen, insbesondere in der Physik und Ingenieurwissenschaften, eine wichtige Rolle spielt. Sie hat die allgemeine Form:

f(x)=λ∫abK(x,t)ϕ(t) dt+g(x)f(x) = \lambda \int_a^b K(x, t) \phi(t) \, dt + g(x)f(x)=λ∫ab​K(x,t)ϕ(t)dt+g(x)

Hierbei ist f(x)f(x)f(x) eine gegebene Funktion, K(x,t)K(x, t)K(x,t) der sogenannte Kern der Integralgleichung, ϕ(t)\phi(t)ϕ(t) die gesuchte Funktion, und g(x)g(x)g(x) eine Funktion, die in das Problem integriert wird. Der Parameter λ\lambdaλ ist ein Skalar, der oft als Eigenwert bezeichnet wird. Fredholm-Integralgleichungen werden in zwei Typen unterteilt: die erste Art, bei der g(x)=0g(x) = 0g(x)=0 ist, und die zweite Art, bei der g(x)g(x)g(x) nicht null ist. Diese Gleichungen sind besonders nützlich zur Beschreibung von physikalischen Phänomenen, wie z.B. bei der Lösung von Problemen in der Elektrodynamik oder der Quantenmechanik.

Caratheodory-Kriterium

Das Caratheodory-Kriterium ist ein wichtiges Konzept in der Analysis, das sich mit der Konvexität von Mengen befasst. Es besagt, dass ein Punkt xxx in einem Raum Rn\mathbb{R}^nRn innerhalb einer konvexen Menge CCC liegt, wenn und nur wenn er als konvexe Kombination von Punkten aus CCC dargestellt werden kann. Formal bedeutet dies, dass es Punkte x1,x2,…,xk∈Cx_1, x_2, \ldots, x_k \in Cx1​,x2​,…,xk​∈C und nicht-negative Koeffizienten λ1,λ2,…,λk\lambda_1, \lambda_2, \ldots, \lambda_kλ1​,λ2​,…,λk​ gibt, sodass:

x=∑i=1kλiximit∑i=1kλi=1x = \sum_{i=1}^{k} \lambda_i x_i \quad \text{mit} \quad \sum_{i=1}^{k} \lambda_i = 1x=i=1∑k​λi​xi​miti=1∑k​λi​=1

Dies ist besonders nützlich in der Optimierung und der ökonomischen Theorie, da es hilft, die Struktur von Lösungen zu verstehen. Das Kriterium verdeutlicht, dass die konvexen Mengen durch ihre Randpunkte vollständig beschrieben werden können, was zu einer effizienteren Analyse führt.

Ferroelectric-Hochschichtdünnfilme

Ferroelectric Thin Films sind dünne Schichten von ferroelectricen Materialien, die eine spontane Polarisation aufweisen, die umkehrbar ist. Diese Materialien sind charakterisiert durch ihre Fähigkeit, die elektrische Polarisation in Abhängigkeit von einem externen elektrischen Feld zu ändern, was sie für Anwendungen in der Speichertechnologie, Sensorik und Aktuatorik besonders interessant macht. Die Herstellung dieser Filme erfolgt häufig durch Techniken wie Molekularstrahlepitaxie oder Sputtern, um eine präzise Kontrolle über die Schichtdicke und -qualität zu gewährleisten.

Die Eigenschaften von ferroelectricen Dünnschichten sind stark von ihrer Struktur und Morphologie abhängig. Beispielsweise kann die Kristallstruktur durch die Substratmaterialien und Wachstumsbedingungen beeinflusst werden, was zu unterschiedlichen elektrischen Eigenschaften führt. Zudem ermöglicht die Kombination von Ferroelectricität mit anderen Funktionalitäten, wie in Multifunktionalen Materialien, innovative Anwendungen in der Nanoelektronik und der Energieumwandlung.

Octree-Datenstrukturen

Ein Octree ist eine hierarchische Datenstruktur, die verwendet wird, um dreidimensionale Räume zu partitionieren. Die Grundidee besteht darin, einen Raum in acht gleich große Volumeneinheiten zu unterteilen, wodurch jede Einheit als Knoten des Baumes fungiert. Diese Struktur ist besonders nützlich in Anwendungen wie 3D-Computergrafik, Robotik und Raumplanung, da sie eine effiziente Suche und Speicherung von räumlichen Daten ermöglicht.

In einem Octree hat jeder Knoten bis zu acht Kinder, die die Unterteilung des Raumes in kleinere Abschnitte darstellen. Wenn ein Knoten eine bestimmte Kapazität überschreitet, wird er in acht Unterknoten aufgeteilt. Die mathematische Darstellung eines Octrees kann durch die Verwendung von Koordinaten in einem dreidimensionalen Raum beschrieben werden, wobei jeder Knoten durch seine Position und die Dimensionen seines Raumes definiert ist. Octrees ermöglichen zudem eine effiziente Durchführung von Abfragen, wie z.B. das Finden von Objekten innerhalb eines bestimmten Bereichs oder das Kollisionserkennen in 3D-Szenen.