StudierendeLehrende

Sharpe Ratio

Die Sharpe Ratio ist eine Kennzahl, die verwendet wird, um die Rendite eines Investments im Verhältnis zu seinem Risiko zu bewerten. Sie wird berechnet, indem die Überrendite eines Portfolios (d.h. die Rendite über den risikofreien Zinssatz hinaus) durch die Standardabweichung der Renditen des Portfolios geteilt wird. Die Formel lautet:

S=Rp−RfσpS = \frac{R_p - R_f}{\sigma_p}S=σp​Rp​−Rf​​

Hierbei ist SSS die Sharpe Ratio, RpR_pRp​ die Rendite des Portfolios, RfR_fRf​ der risikofreie Zinssatz und σp\sigma_pσp​ die Standardabweichung der Portfolio-Renditen. Eine höhere Sharpe Ratio deutet darauf hin, dass das Investment im Verhältnis zu seinem Risiko eine bessere Rendite erzielt. Im Allgemeinen wird eine Sharpe Ratio von über 1 als gut angesehen, während Werte über 2 als sehr gut gelten.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Stackelberg-Modell

Das Stackelberg-Modell ist ein wichtiges Konzept in der Spieltheorie und der Mikroökonomie, das vor allem in oligopolistischen Märkten Anwendung findet. Es beschreibt eine Marktsituation, in der es einen Führer (Leader) und einen oder mehrere Folger (Followers) gibt. Der Führer entscheidet zuerst über die Produktionsmenge, und die Folger reagieren darauf, indem sie ihre eigenen Produktionsmengen anpassen. Dies führt zu einem strategischen Vorteil für den Führer, da er die Reaktionen der Folger antizipieren kann.

Mathematisch kann das Verhalten des Führers und der Folger durch Reaktionsfunktionen beschrieben werden, wobei der Führer sein Gewinnmaximum unter Berücksichtigung der Reaktionen der Folger maximiert. Die Gleichgewichtslösung des Modells zeigt, dass der Führer in der Lage ist, mehr Gewinn zu erzielen als die Folger, da er den Marktpreis durch seine erste Entscheidung beeinflussen kann.

Organische Thermoelektrische Materialien

Organische thermoelektrische Materialien sind eine Klasse von Materialien, die aus organischen Molekülen oder Polymeren bestehen und zur Umwandlung von Wärme in elektrische Energie verwendet werden. Diese Materialien bieten mehrere Vorteile, darunter Flexibilität, geringes Gewicht und einfache Verarbeitung, was sie zu einer attraktiven Alternative zu anorganischen thermoelektrischen Materialien macht. Ihre Effizienz wird häufig durch die thermische Konduktivität, elektrische Leitfähigkeit und Seebeck-Koeffizienten bestimmt, die durch die Beziehung ZT=S2σTκZT = \frac{S^2 \sigma T}{\kappa}ZT=κS2σT​ beschrieben wird, wobei ZTZTZT der figure of merit ist, SSS der Seebeck-Koeffizient, σ\sigmaσ die elektrische Leitfähigkeit, TTT die Temperatur und κ\kappaκ die thermische Leitfähigkeit. Organische Materialien zeigen oft niedrigere thermische Leitfähigkeiten, was ihre Effizienz in bestimmten Anwendungen verbessern kann. Aktuelle Forschungen konzentrieren sich auf die Verbesserung der Eigenschaften dieser Materialien, um ihre Anwendung in der Energieerzeugung und Kühltechnologie weiter zu fördern.

Materialwissenschaftliche Innovationen

Die Innovations im Bereich der Materialwissenschaften revolutionieren zahlreiche Industrien, von der Luft- und Raumfahrt bis hin zur Medizintechnik. Diese Fortschritte basieren auf der Entwicklung neuer Materialien mit verbesserten Eigenschaften, wie z.B. Leichtigkeit, Festigkeit und Beständigkeit gegen Umwelteinflüsse. Ein Beispiel sind Nanomaterialien, die durch ihre winzige Struktur außergewöhnliche mechanische und elektrische Eigenschaften aufweisen. Darüber hinaus ermöglichen intelligente Materialien die Anpassung an unterschiedliche Umgebungsbedingungen, was sie für den Einsatz in Sensoren und Aktuatoren prädestiniert. Diese Innovationen tragen nicht nur zur Effizienzsteigerung in der Produktion bei, sondern leisten auch einen wichtigen Beitrag zur Nachhaltigkeit, indem sie den Ressourcenverbrauch minimieren und die Lebensdauer von Produkten verlängern.

Lorentz-Transformation

Die Lorentz-Transformation ist ein fundamentales Konzept der speziellen Relativitätstheorie, das beschreibt, wie die Koordinaten von Raum und Zeit zwischen zwei Bezugssystemen, die sich relativ zueinander mit konstanter Geschwindigkeit bewegen, umgerechnet werden. Sie wurde von dem niederländischen Physiker Hendrik Lorentz formuliert und ist entscheidend für das Verständnis der Relativität von Zeit und Raum. Die Transformation zeigt, dass Zeit und Raum nicht absolut sind, sondern von der Relativgeschwindigkeit der Beobachter abhängen.

Die wichtigsten Formeln der Lorentz-Transformation lauten:

x′=γ(x−vt)x' = \gamma (x - vt)x′=γ(x−vt) t′=γ(t−vxc2)t' = \gamma \left( t - \frac{vx}{c^2} \right)t′=γ(t−c2vx​)

Hierbei sind:

  • x′x'x′ und t′t't′ die Koordinaten im bewegten Bezugssystem,
  • xxx und ttt die Koordinaten im ruhenden Bezugssystem,
  • vvv die Relativgeschwindigkeit zwischen den beiden Systemen,
  • ccc die Lichtgeschwindigkeit,
  • γ=11−v2c2\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}γ=1−c2v2​​1​ der Lorentz-Faktor, der die Effekte der Zeitdilatation und Längenkontraktion quantifiziert.

Diese Transformation zeigt,

Legendre-Polynome

Die Legendre-Polynome sind eine Familie von orthogonalen Polynomfunktionen, die in der Mathematik und Physik weit verbreitet sind, insbesondere in der Lösung von Differentialgleichungen und in der Theorie der Potenzialfelder. Sie sind definiert auf dem Intervall [−1,1][-1, 1][−1,1] und werden oft mit Pn(x)P_n(x)Pn​(x) bezeichnet, wobei nnn den Grad des Polynoms angibt. Die ersten paar Legendre-Polynome sind:

  • P0(x)=1P_0(x) = 1P0​(x)=1
  • P1(x)=xP_1(x) = xP1​(x)=x
  • P2(x)=12(3x2−1)P_2(x) = \frac{1}{2}(3x^2 - 1)P2​(x)=21​(3x2−1)
  • P3(x)=12(5x3−3x)P_3(x) = \frac{1}{2}(5x^3 - 3x)P3​(x)=21​(5x3−3x)

Diese Polynome erfüllen die orthogonale Bedingung:

∫−11Pm(x)Pn(x) dx=0fu¨r m≠n\int_{-1}^{1} P_m(x) P_n(x) \, dx = 0 \quad \text{für } m \neq n∫−11​Pm​(x)Pn​(x)dx=0fu¨r m=n

Die Legendre-Polynome sind besonders nützlich in der Physik, zum Beispiel bei der Lösung des Laplace-Gleichung im Kugelkoordinatensystem, da sie die Eigenschaften von sphärischen Harmonischen beschreiben.

Backstepping Nonlinear Control

Backstepping ist eine systematische Methode zur Regelung nichtlinearer Systeme, die auf der schrittweisen Konstruktion von Steuerungsgesetzen basiert. Der Ansatz beginnt mit der Identifikation eines geeigneten Ausgangspunktes, häufig einer stabilen Gleichgewichtslage, und arbeitet sich schrittweise zurück durch die Dynamik des Systems. Dabei wird für jeden Schritt ein Lyapunov-Funktion konstruiert, um die Stabilität des Systems sicherzustellen.

Ein typisches Verfahren besteht aus den folgenden Schritten:

  1. Modellierung des Systems: Das nichtlineare System wird in eine Form gebracht, die eine Rückführung ermöglicht.
  2. Konstruktion der Steuerung: Für jeden Zustand wird eine Steuerung abgeleitet, die die Stabilität gewährleistet.
  3. Integration der Steuerung: Die einzelnen Steuerungsgesetze werden kombiniert, um ein vollständiges Steuerungsgesetz zu erhalten.

Der Backstepping-Ansatz ist besonders nützlich für Systeme mit ungewöhnlichem Verhalten und kann in verschiedenen Anwendungen eingesetzt werden, darunter Robotik und Automatisierungstechnik.