StudierendeLehrende

Transcendental Number

Eine transzendente Zahl ist eine spezielle Art von reeller oder komplexer Zahl, die nicht als Wurzel einer algebraischen Gleichung mit ganzzahligen Koeffizienten dargestellt werden kann. Das bedeutet, dass es keine ganze Zahlen aaa und bbb gibt, so dass eine Gleichung der Form

p(x)=anxn+an−1xn−1+…+a1x+a0=0p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 = 0p(x)=an​xn+an−1​xn−1+…+a1​x+a0​=0

mit ai∈Za_i \in \mathbb{Z}ai​∈Z und n∈Nn \in \mathbb{N}n∈N existiert, für die xxx eine Lösung ist. Ein bekanntes Beispiel für eine transzendente Zahl ist die Zahl π\piπ sowie die Eulersche Zahl eee. Im Gegensatz dazu sind algebraische Zahlen wie Wurzeln und rationale Zahlen Lösungen solcher Gleichungen. Die Entdeckung transzendenter Zahlen hat bedeutende Implikationen in der Mathematik, insbesondere in der Zahlentheorie und der Analysis.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Dirichlet-Randbedingungen

Das Dirichlet-Problem bezieht sich auf eine spezielle Art von Randwertproblemen in der Mathematik, insbesondere in der Theorie der partiellen Differentialgleichungen. Bei diesen Problemen werden die Werte einer Funktion an den Rändern eines bestimmten Gebiets vorgegeben. Mathematisch formuliert bedeutet dies, dass für ein Gebiet Ω\OmegaΩ und den Rand ∂Ω\partial \Omega∂Ω die Funktion uuu an den Randpunkten festgelegt ist, also u(x)=g(x)u(x) = g(x)u(x)=g(x) für x∈∂Ωx \in \partial \Omegax∈∂Ω, wobei ggg eine gegebene Funktion ist.

Diese Randbedingungen sind besonders wichtig, um Lösungen für physikalische Probleme zu finden, die oft in Form von Temperaturverteilungen, elektrischen Feldern oder anderen physikalischen Größen auftreten. Die Dirichlet-Bedingungen garantieren, dass die Lösung an den Randpunkten konstant bleibt, was in vielen Anwendungen, wie z.B. bei der Wärmeleitung oder der Elastizitätstheorie, von entscheidender Bedeutung ist. Um eine eindeutige Lösung zu gewährleisten, müssen die Randbedingungen konsistent und gut definiert sein.

Fourier-Koeffizienten-Konvergenz

Die Konvergenz der Fourier-Koeffizienten bezieht sich auf das Verhalten der Fourier-Reihe einer Funktion, wenn die Anzahl der verwendeten Koeffizienten erhöht wird. Eine Funktion f(x)f(x)f(x) kann durch ihre Fourier-Reihe dargestellt werden als:

f(x)∼a0+∑n=1∞(ancos⁡(nx)+bnsin⁡(nx))f(x) \sim a_0 + \sum_{n=1}^{\infty} (a_n \cos(nx) + b_n \sin(nx))f(x)∼a0​+n=1∑∞​(an​cos(nx)+bn​sin(nx))

Hierbei sind ana_nan​ und bnb_nbn​ die Fourier-Koeffizienten, die durch die Integrale

an=1π∫−ππf(x)cos⁡(nx) dxa_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, dxan​=π1​∫−ππ​f(x)cos(nx)dx

und

bn=1π∫−ππf(x)sin⁡(nx) dxb_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, dxbn​=π1​∫−ππ​f(x)sin(nx)dx

bestimmt werden. Die Konvergenz der Fourier-Koeffizienten ist wichtig, um zu verstehen, wie gut die Fourier-Reihe die Funktion annähert. Bei stetigen oder stückweise stetigen Funktionen konvergiert die Fourier-Reihe punktweise fast überall zur Funktion selbst, während bei sprunghaften oder nicht-stetigen Funktionen die Konvergenz an den Sprungstellen durch den Mittelwert der Funktion an diesen Punkten gegeben

Phillips-Kurve Erwartungen Anpassung

Die Phillips-Kurve beschreibt die inverse Beziehung zwischen Inflation und Arbeitslosigkeit in einer Volkswirtschaft. Der Adjustierungseffekt der Erwartungen bezieht sich auf die Anpassung der Inflationserwartungen der Wirtschaftsteilnehmer im Laufe der Zeit. Wenn die Inflation höher als erwartet ist, werden Arbeitnehmer und Unternehmen ihre zukünftigen Erwartungen an die Preisentwicklung anpassen, was zu einer Erhöhung der Löhne und damit zu einer weiteren Inflation führen kann. Dies kann in einem sich selbst verstärkenden Zyklus resultieren, in dem steigende Inflationserwartungen die tatsächliche Inflation weiter anheizen. Der mathematische Ausdruck für die Phillips-Kurve könnte vereinfacht als folgt dargestellt werden:

πt=πt−1−β(ut−un)\pi_t = \pi_{t-1} - \beta (u_t - u_n)πt​=πt−1​−β(ut​−un​)

Hierbei ist πt\pi_tπt​ die Inflation zum Zeitpunkt ttt, β\betaβ der Reaktionsfaktor, utu_tut​ die tatsächliche Arbeitslosenquote und unu_nun​ die natürliche Arbeitslosenquote. Die Anpassung der Erwartungen spielt eine entscheidende Rolle, da sie die langfristigen Beziehungen zwischen Inflation und Arbeitslosigkeit beeinflusst und die Effektivität der Geldpolitik in Frage stellt.

Bragg-Diffektion

Die Bragg-Diffraction ist ein fundamentales Prinzip der Röntgenkristallographie, das die Wechselwirkung von Röntgenstrahlen mit kristallinen Materialien beschreibt. Sie basiert auf der Bedingung, dass konstruktive Interferenz auftritt, wenn die Röntgenstrahlen auf die atomare Gitterstruktur eines Kristalls treffen. Die mathematische Grundlage dafür wird durch die Bragg-Gleichung gegeben:

nλ=2dsin⁡(θ)n\lambda = 2d \sin(\theta)nλ=2dsin(θ)

Hierbei ist nnn die Ordnung der Reflexion, λ\lambdaλ die Wellenlänge der Röntgenstrahlen, ddd der Abstand zwischen den Gitterebenen des Kristalls und θ\thetaθ der Einfallswinkel der Strahlen. Wenn die Bedingung erfüllt ist, kann ein intensives Reflexionssignal gemessen werden, das auf die Struktur des Kristalls hinweist. Die Bragg-Diffraction ermöglicht es Wissenschaftlern, die atomare Struktur von Materialien zu untersuchen und ist daher ein unverzichtbares Werkzeug in der Materialwissenschaft und Chemie.

Vgg16

VGG16 ist ein tiefes Convolutional Neural Network (CNN), das für die Bildklassifikation entwickelt wurde und 2014 von der Visual Geometry Group der Universität Oxford vorgestellt wurde. Es besteht aus 16 Gewichtsschichten, darunter 13 Convolutional-Schichten und 3 Fully Connected-Schichten. VGG16 zeichnet sich durch seine einheitliche Architektur aus, bei der nur 3x3 Convolutional-Kernel (Filter) verwendet werden, um eine hohe räumliche Auflösung zu erhalten, während die Anzahl der Filter mit der Tiefe des Netzwerks zunimmt. Diese Struktur ermöglicht es, komplexe Merkmale in den Bildern zu erfassen, was zu einer hohen Genauigkeit bei der Bildklassifikation führt. VGG16 wird häufig als Vortrainierungsmodell verwendet und kann durch Transfer Learning an spezifische Aufgaben angepasst werden, was es zu einem beliebten Werkzeug in der Computer Vision macht.

Hodge-Zerlegung

Die Hodge-Zerlegung ist ein fundamentales Konzept in der Differentialgeometrie und der algebraischen Topologie, das sich mit der Struktur von Differentialformen auf kompakten, orientierbaren Mannigfaltigkeiten beschäftigt. Sie besagt, dass jede Differentialform in einer kompakten Riemannschen Mannigfaltigkeit in drei orthogonale Komponenten zerlegt werden kann:

  1. exakte Formen (die aus der Ableitung anderer Formen entstehen),
  2. cohomologische Formen (die die Eigenschaften der Mannigfaltigkeit widerspiegeln) und
  3. harmonische Formen (die sowohl exakte als auch cohomologische Eigenschaften haben).

Mathematisch ausgedrückt, lässt sich eine kkk-Form ω\omegaω als ω=dα+δβ+γ\omega = d\alpha + \delta\beta + \gammaω=dα+δβ+γ schreiben, wobei ddd den Exterior-Differentialoperator darstellt, δ\deltaδ den adjungierten Operator und α,β,γ\alpha, \beta, \gammaα,β,γ entsprechende Differentialformen sind. Diese Zerlegung hat weitreichende Anwendungen in der theoretischen Physik, insbesondere in der Elektrodynamik und der Stringtheorie, da sie hilft, komplexe Probleme in überschaubare Teile zu zerlegen.