StudierendeLehrende

Van’T Hoff

Der niederländische Chemiker Jacobus Henricus van 't Hoff (1852-1911) gilt als einer der Begründer der modernen Chemie und ist bekannt für seine Beiträge zur Thermodynamik und Kinetik chemischer Reaktionen. Er entwickelte das Konzept der chemischen Gleichgewichtszustände und formulierte das Van’t Hoff-Gesetz, das die Beziehung zwischen Temperatur und dem Gleichgewicht einer chemischen Reaktion beschreibt.

Seine bedeutendsten Arbeiten beinhalten die Einführung der Kinetik in die Chemie, insbesondere durch seine Theorie der reaktionellen Geschwindigkeiten. Zudem war er der erste, der die osmotischen Eigenschaften von Lösungen mathematisch beschrieb, was zur Entwicklung der modernen physikalischen Chemie führte. Van 't Hoff war auch ein Pionier in der Anwendung der Geometrischen Isomerie und der Stereochemie, was die Struktur von Molekülen und deren räumliche Anordnung betrifft. Seine Arbeiten und Entdeckungen haben die Chemie revolutioniert und werden bis heute in der Forschung und Industrie angewendet.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Cournot-Wettbewerb

Die Cournot-Wettbewerb ist ein Modell der Oligopoltheorie, das von dem französischen Ökonomen Antoine Augustin Cournot im Jahr 1838 entwickelt wurde. In diesem Modell konkurrieren Unternehmen um die Menge, die sie produzieren, und gehen davon aus, dass die Menge der anderen Unternehmen konstant bleibt. Jedes Unternehmen maximiert seinen eigenen Gewinn, indem es seine Produktionsmenge wählt, wobei es die Reaktion der Wettbewerber berücksichtigt. Der Gleichgewichtspreis wird durch die gesamte produzierte Menge auf dem Markt bestimmt, was zu einem sogenannten Cournot-Gleichgewicht führt, bei dem kein Unternehmen einen Anreiz hat, seine Produktionsmenge einseitig zu ändern.

Die mathematische Darstellung kann wie folgt aussehen: Sei q1q_1q1​ die Produktionsmenge von Unternehmen 1 und q2q_2q2​ die von Unternehmen 2. Der Marktpreis PPP hängt von der Gesamtmenge Q=q1+q2Q = q_1 + q_2Q=q1​+q2​ ab, typischerweise in der Form P(Q)=a−bQP(Q) = a - bQP(Q)=a−bQ, wobei aaa und bbb positive Konstanten sind. In diesem Kontext trifft jedes Unternehmen die Entscheidung, indem es die Reaktionsfunktion des anderen Unternehmens berücksichtigt, was zu einem stabilen Gleichgewicht führt.

GARCH-Modell

Das GARCH-Modell (Generalized Autoregressive Conditional Heteroskedasticity) ist ein statistisches Modell, das häufig zur Analyse und Vorhersage von Zeitreihen mit variabler Volatilität verwendet wird, insbesondere in der Finanzwirtschaft. Es wurde entwickelt, um die Heteroskedastizität zu berücksichtigen, d.h. die Tatsache, dass die Varianz der Fehlerterme in einem Zeitreihenmodell nicht konstant ist, sondern sich über die Zeit ändert.

Das GARCH-Modell beschreibt die bedingte Varianz einer Zeitreihe als Funktion ihrer vorherigen Werte. Die allgemeine Form des GARCH(1,1)-Modells wird durch die Gleichung

σt2=α0+α1ϵt−12+β1σt−12\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2σt2​=α0​+α1​ϵt−12​+β1​σt−12​

definiert, wobei σt2\sigma_t^2σt2​ die bedingte Varianz zum Zeitpunkt ttt, ϵt−12\epsilon_{t-1}^2ϵt−12​ den vorherigen Fehlerterm und σt−12\sigma_{t-1}^2σt−12​ die vorherige bedingte Varianz darstellt. Die Parameter α0\alpha_0α0​, α1\alpha_1α1​ und β1\beta_1β1​ müssen positiv sein und erfüllen die Bedingung $ \alpha_1

Perron-Frobenius-Eigenwertsatz

Das Perron-Frobenius-Eigenwerttheorem befasst sich mit nicht-negativen Matrizen und deren Eigenwerten und -vektoren. Es besagt, dass eine nicht-negative quadratische Matrix AAA einen eindeutigen größten Eigenwert hat, der echt positiv ist, und dass der zugehörige Eigenvektor ebenfalls echt positiv ist. Dieses Theorem hat weitreichende Anwendungen in verschiedenen Bereichen, wie z.B. der Ökonomie, der Populationsdynamik und der Markov-Ketten.

Darüber hinaus garantiert das Theorem, dass, wenn die Matrix irreduzibel ist (d.h. es gibt einen Weg zwischen jedem Paar von Zuständen), der größte Eigenwert λ\lambdaλ der Matrix AAA auch der dominierende Eigenwert ist, was bedeutet, dass alle anderen Eigenwerte in Betrag kleiner sind als λ\lambdaλ. Dies bietet eine wertvolle Grundlage für die Analyse dynamischer Systeme und die Stabilität von Gleichgewichtszuständen.

Meg Inverse Problem

Das Meg Inverse Problem bezieht sich auf die Herausforderung, die zugrunde liegenden Quellen von Magnetfeldmessungen zu rekonstruieren, die durch magnetoenzephalographische (MEG) oder magnetische Resonanz bildgebende Verfahren (MRI) erfasst wurden. Bei diesem Problem wird versucht, die elektrischen Aktivitäten im Gehirn, die für die gemessenen Magnetfelder verantwortlich sind, zu identifizieren. Dies ist besonders schwierig, da die Beziehung zwischen den Quellen und den gemessenen Feldern nicht eindeutig ist und oft mehrere mögliche Quellkonfigurationen existieren können, die dasselbe Magnetfeld erzeugen.

Die mathematische Formulierung des Problems kann durch die Gleichung B=A⋅SB = A \cdot SB=A⋅S beschrieben werden, wobei BBB die gemessenen Magnetfelder, AAA die Sensitivitätsmatrix und SSS die Quellstärken repräsentiert. Um das Problem zu lösen, sind verschiedene Methoden wie Regularisierung und optimale Schätzung erforderlich, um die Lösungen zu stabilisieren und die Auswirkungen von Rauschen zu minimieren. Diese Techniken sind entscheidend, um die Genauigkeit und Zuverlässigkeit der rekonstruierten Quellaktivitäten zu gewährleisten.

Eigenwertproblem

Das Eigenvalue Problem ist ein zentrales Konzept in der linearen Algebra und beschäftigt sich mit der Suche nach sogenannten Eigenwerten und Eigenvektoren einer Matrix. Gegeben sei eine quadratische Matrix AAA. Ein Eigenwert λ\lambdaλ und der zugehörige Eigenvektor v\mathbf{v}v erfüllen die Gleichung:

Av=λvA \mathbf{v} = \lambda \mathbf{v}Av=λv

Das bedeutet, dass die Anwendung der Matrix AAA auf den Eigenvektor v\mathbf{v}v lediglich eine Skalierung des Vektors um den Faktor λ\lambdaλ bewirkt. Eigenwerte und Eigenvektoren finden Anwendung in verschiedenen Bereichen, wie z.B. in der Stabilitätsanalyse, bei der Lösung von Differentialgleichungen sowie in der Quantenmechanik. Um die Eigenwerte zu bestimmen, wird die charakteristische Gleichung aufgestellt:

det(A−λI)=0\text{det}(A - \lambda I) = 0det(A−λI)=0

Hierbei ist III die Einheitsmatrix. Die Lösungen dieser Gleichung geben die Eigenwerte an, während die zugehörigen Eigenvektoren durch Einsetzen der Eigenwerte in die ursprüngliche Gleichung gefunden werden können.

Rational-Expectations-Hypothese

Die Rational Expectations Hypothesis (REH) ist ein ökonomisches Konzept, das besagt, dass Individuen in der Wirtschaft rationale Erwartungen über zukünftige wirtschaftliche Variablen bilden. Dies bedeutet, dass die Menschen alle verfügbaren Informationen nutzen, um ihre Erwartungen zu bilden, und dass ihre Prognosen im Durchschnitt korrekt sind. Die REH impliziert, dass es schwierig ist, durch wirtschaftliche Politik oder Interventionen systematisch die Wirtschaftsaktivität zu beeinflussen, da die Akteure die Auswirkungen solcher Maßnahmen bereits antizipieren.

Ein zentrales Merkmal dieser Hypothese ist, dass die Erwartungen der Menschen nicht systematisch von den tatsächlichen Ergebnissen abweichen, was bedeutet, dass:

  • Individuen nutzen alle verfügbaren Informationen.
  • Erwartungen sind im Durchschnitt genau.
  • Politische Maßnahmen haben oft unerwartete oder begrenzte Effekte.

Mathematisch kann die Hypothese dargestellt werden durch die Gleichung:

Et[Yt+1]=Yt+1∗E_t[Y_{t+1}] = Y_{t+1}^*Et​[Yt+1​]=Yt+1∗​

wobei Et[Yt+1]E_t[Y_{t+1}]Et​[Yt+1​] die erwartete zukünftige Variable und Yt+1∗Y_{t+1}^*Yt+1∗​ die tatsächliche zukünftige Variable darstellt.