StudierendeLehrende

State Feedback

State Feedback ist eine Regelungstechnik, die in der System- und Regelungstechnik verwendet wird, um das Verhalten dynamischer Systeme zu steuern. Bei dieser Methode wird der Zustand des Systems, der durch einen Vektor xxx beschrieben wird, direkt in die Regelstrategie einbezogen. Der Regler berechnet ein Steuersignal uuu in Abhängigkeit von den aktuellen Zuständen des Systems, typischerweise durch die Gleichung:

u=−Kxu = -Kxu=−Kx

Hierbei steht KKK für die Rückführungsmatrix, die die Rückführung der Zustände gewichtet. Ziel ist es, das Systemverhalten zu optimieren, indem Stabilität und gewünschte dynamische Eigenschaften erreicht werden. Ein wesentlicher Vorteil von State Feedback ist die Möglichkeit, die Pole des geschlossenen Regelkreises zu platzieren, was die Reaktion des Systems gezielt beeinflusst. Diese Technik findet Anwendung in zahlreichen Bereichen, darunter Robotik, Automatisierungstechnik und Luftfahrt.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Implizites Runge-Kutta

Der implizite Runge-Kutta-Algorithmus ist eine erweiterte Methode zur Lösung von gewöhnlichen Differentialgleichungen, die besonders vorteilhaft ist, wenn es um steife Probleme geht. Im Gegensatz zu expliziten Methoden, bei denen der nächste Schritt direkt aus den bekannten Werten berechnet wird, erfordert die implizite Methode die Lösung eines Gleichungssystems, das die Unbekannten des nächsten Schrittes enthält.

Die allgemeine Form einer impliziten Runge-Kutta-Methode kann durch folgende Gleichungen dargestellt werden:

yn+1=yn+h∑i=1sbikiy_{n+1} = y_n + h \sum_{i=1}^{s} b_i k_iyn+1​=yn​+hi=1∑s​bi​ki​ ki=f(tn+cih,yn+h∑j=1iaijkj)k_i = f(t_n + c_i h, y_n + h \sum_{j=1}^{i} a_{ij} k_j)ki​=f(tn​+ci​h,yn​+hj=1∑i​aij​kj​)

Hierbei sind hhh die Schrittweite, kik_iki​ die Stützwerte und aij,bi,cia_{ij}, b_i, c_iaij​,bi​,ci​ die Butcher-Tabelle Parameter, die die Methode definieren. Der Hauptvorteil dieser Methoden liegt in ihrer Fähigkeit, stabilere Lösungen für Probleme zu bieten, die schnelle Änderungen oder große Unterschiede in den Skalen aufweisen. Daher sind sie besonders nützlich in der Ingenieurwissenschaft und Physik, wo steife Differentialgleichungen häufig auftreten.

Nichtlinearer Beobachterentwurf

Der Nonlinear Observer Design befasst sich mit der Schätzung und Rekonstruktion von Zuständen eines nichtlinearen Systems, basierend auf seinen Eingaben und Ausgaben. Im Gegensatz zu linearen Beobachtern, die auf der Annahme linearer Dynamiken beruhen, müssen nichtlineare Beobachter die komplexen, oft unvorhersehbaren Verhaltensweisen nichtlinearer Systeme berücksichtigen. Der Designprozess umfasst typischerweise die Auswahl geeigneter nichtlinearer Funktionen, um die Dynamik des Systems zu beschreiben und sicherzustellen, dass die Schätzungen des Zustands asymptotisch konvergieren.

Wichtige Konzepte im Nonlinear Observer Design sind:

  • Stabilität: Untersuchung der Stabilität der Schätzungen und deren Konvergenzverhalten.
  • Lyapunov-Theorie: Anwendung von Lyapunov-Funktionen zur Analyse der Stabilität und Konvergenz.
  • Nichtlineare Rückführung: Verwendung von nichtlinearen Rückführungsstrategien, um die Schätzungen zu verbessern.

Insgesamt zielt der Nonlinear Observer Design darauf ab, zuverlässige, genaue und robuste Schätzungen von Systemzuständen zu liefern, die für die Regelung und Überwachung von nichtlinearen Systemen entscheidend sind.

Pauli-Prinzip

Das Pauli-Prinzip besagt, dass zwei identische Fermionen, wie Elektronen, nicht denselben Quantenzustand einnehmen können. Dies bedeutet, dass in einem System von Elektronen in einem Atom kein Paar von Elektronen die gleichen vier Quantenzahlen haben kann. Die vier Quantenzahlen sind:

  1. Hauptquantenzahl (nnn)
  2. Nebenquantenzahl (lll)
  3. Magnetquantenzahl (mlm_lml​)
  4. Spinquantenzahl (msm_sms​)

Das Pauli-Prinzip ist entscheidend für das Verständnis der Elektronenkonfiguration in Atomen und erklärt die Struktur des Periodensystems. Durch dieses Prinzip können Elektronen in einem Atom verschiedene Energieniveaus und Orbitale einnehmen, was zu den charakteristischen chemischen Eigenschaften der Elemente führt. In der Praxis führt das Pauli-Prinzip zu einer Stabilität der Materie, da es die maximal mögliche Anzahl von Elektronen in einem bestimmten Energieniveau und Orbital definiert.

Ipo-Preisfestsetzung

Das IPO Pricing (Initial Public Offering Pricing) bezieht sich auf den Prozess der Festlegung des Preises, zu dem Aktien eines Unternehmens beim ersten Verkauf an die Öffentlichkeit angeboten werden. Dieser Preis ist entscheidend, da er sowohl die Wahrnehmung des Unternehmens durch Investoren als auch die Kapitalbeschaffung beeinflusst. Bei der Preisfestlegung berücksichtigen Banken und Unternehmen verschiedene Faktoren, darunter Marktanalyse, Nachfrageprognosen und finanzielle Kennzahlen. Ein häufig verwendetes Verfahren ist die Bookbuilding-Methode, bei der Investoren ihre Kaufinteresse und Preisvorstellungen angeben. Letztendlich wird der IPO-Preis so festgelegt, dass er sowohl für das Unternehmen als auch für die Investoren attraktiv ist und eine erfolgreiche Platzierung der Aktien gewährleistet.

Leistungsdichtespektrum

Die Power Spectral Density (PSD) ist ein Maß für die Verteilung der Leistung eines Signals über verschiedene Frequenzen. Sie beschreibt, wie die Energie eines Signals im Frequenzbereich konzentriert ist und wird häufig in der Signalverarbeitung und Kommunikationstechnik verwendet. Die PSD wird typischerweise in Einheiten von Leistung pro Frequenzeinheit, z. B. Watt pro Hertz (W/Hz), angegeben. Mathematisch wird die PSD oft als die Fourier-Transformierte der Autokorrelationsfunktion eines Signals definiert:

S(f)=∫−∞∞R(τ)e−j2πfτdτS(f) = \int_{-\infty}^{\infty} R(\tau) e^{-j 2 \pi f \tau} d\tauS(f)=∫−∞∞​R(τ)e−j2πfτdτ

wobei R(τ)R(\tau)R(τ) die Autokorrelationsfunktion ist. Die Analyse der PSD ermöglicht es, Frequenzkomponenten eines Signals zu identifizieren und deren relative Stärke zu bewerten, was in Anwendungen wie Rauschmessungen, Systemanalysen und der Überwachung von Signalqualität von großer Bedeutung ist.

Kalman-Steuerbarkeit

Die Kalman Controllability ist ein Konzept aus der Regelungstechnik, das beschreibt, ob ein System durch geeignete Steuerungseingaben vollständig in einen gewünschten Zustand überführt werden kann. Ein System wird als kontrollierbar angesehen, wenn es möglich ist, von jedem Zustand zu einem beliebigen anderen Zustand innerhalb einer endlichen Zeitspanne zu gelangen. Mathematisch kann die Kontrollierbarkeit eines linearen Systems, beschrieben durch die Zustandsraumdarstellung x˙=Ax+Bu\dot{x} = Ax + Bux˙=Ax+Bu, durch die Kontrollierbarkeitsmatrix CCC beurteilt werden, definiert als:

C=[B,AB,A2B,…,An−1B]C = [B, AB, A^2B, \ldots, A^{n-1}B]C=[B,AB,A2B,…,An−1B]

Hierbei ist nnn die Dimension des Zustandsraums. Ist die Determinante der Matrix CCC ungleich null (d.h. det(C)≠0\text{det}(C) \neq 0det(C)=0), ist das System kontrollierbar. Die Kalman Controllability ist somit entscheidend, um die Machbarkeit von Regelungsstrategien zu bewerten und sicherzustellen, dass das System auf gewünschte Inputs reagiert.