StudentsEducators

Josephson Tunneling

Josephson Tunneling ist ein quantenmechanisches Phänomen, das auftritt, wenn zwei supraleitende Materialien durch eine dünne isolierende Schicht getrennt sind. In diesem Zustand können Cooper-Paare, die für die supraleitenden Eigenschaften verantwortlich sind, durch die Barriere tunneln, ohne Energie zu verlieren. Dieses Tunneln führt zu einer elektrischen Stromübertragung zwischen den beiden Supraleitern, selbst wenn die Spannung an der Barriere Null ist. Die Beziehung zwischen dem Strom III und der Spannung VVV in einem Josephson-Element wird durch die berühmte Josephson-Gleichung beschrieben:

I=Icsin⁡(2πVΦ0)I = I_c \sin\left(\frac{2\pi V}{\Phi_0}\right)I=Ic​sin(Φ0​2πV​)

Hierbei ist IcI_cIc​ der kritische Strom und Φ0\Phi_0Φ0​ die magnetische Fluxquanteneinheit. Josephson Tunneling findet Anwendung in verschiedenen Technologien, einschließlich Quantencomputern und hochpräzisen Magnetometern, und spielt eine entscheidende Rolle in der Entwicklung von supraleitenden Quanteninterferenzschaltungen (SQUIDs).

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Hotelling’S Rule

Hotelling’s Rule is a principle in resource economics that describes how the price of a non-renewable resource, such as oil or minerals, changes over time. According to this rule, the price of the resource should increase at a rate equal to the interest rate over time. This is based on the idea that resource owners will maximize the value of their resource by extracting it more slowly, allowing the price to rise in the future. In mathematical terms, if P(t)P(t)P(t) is the price at time ttt and rrr is the interest rate, then Hotelling’s Rule posits that:

dPdt=rP\frac{dP}{dt} = rPdtdP​=rP

This means that the growth rate of the price of the resource is proportional to its current price. Thus, the rule provides a framework for understanding the interplay between resource depletion, market dynamics, and economic incentives.

Cobb-Douglas Production Function Estimation

The Cobb-Douglas production function is a widely used form of production function that expresses the output of a firm or economy as a function of its inputs, usually labor and capital. It is typically represented as:

Y=A⋅Lα⋅KβY = A \cdot L^\alpha \cdot K^\betaY=A⋅Lα⋅Kβ

where YYY is the total output, AAA is a total factor productivity constant, LLL is the quantity of labor, KKK is the quantity of capital, and α\alphaα and β\betaβ are the output elasticities of labor and capital, respectively. The estimation of this function involves using statistical methods, such as Ordinary Least Squares (OLS), to determine the coefficients AAA, α\alphaα, and β\betaβ from observed data. One of the key features of the Cobb-Douglas function is that it assumes constant returns to scale, meaning that if the inputs are increased by a certain percentage, the output will increase by the same percentage. This model is not only significant in economics but also plays a crucial role in understanding production efficiency and resource allocation in various industries.

Black-Scholes

The Black-Scholes model, developed by Fischer Black, Myron Scholes, and Robert Merton in the early 1970s, is a mathematical framework used to determine the theoretical price of European-style options. The model assumes that the stock price follows a Geometric Brownian Motion with constant volatility and that markets are efficient, meaning that prices reflect all available information. The core of the model is encapsulated in the Black-Scholes formula, which calculates the price of a call option CCC as:

C=S0N(d1)−Xe−rtN(d2)C = S_0 N(d_1) - X e^{-rt} N(d_2)C=S0​N(d1​)−Xe−rtN(d2​)

where:

  • S0S_0S0​ is the current stock price,
  • XXX is the strike price of the option,
  • rrr is the risk-free interest rate,
  • ttt is the time to expiration,
  • N(d)N(d)N(d) is the cumulative distribution function of the standard normal distribution, and
  • d1d_1d1​ and d2d_2d2​ are calculated using the following equations:
d1=ln⁡(S0/X)+(r+σ2/2)tσtd_1 = \frac{\ln(S_0 / X) + (r + \sigma^2 / 2)t}{\sigma \sqrt{t}}d1​=σt​ln(S0​/X)+(r+σ2/2)t​ d2=d1−σtd_2 = d_1 - \sigma \sqrt{t}d2​=d1​−σt​

In this context, σ\sigmaσ represents the volatility of the stock.

Boosting Ensemble

Boosting is a powerful ensemble learning technique that aims to improve the predictive performance of machine learning models by combining several weak learners into a stronger one. A weak learner is a model that performs slightly better than random guessing, typically a simple model like a decision tree with limited depth. The boosting process works by sequentially training these weak learners, where each new learner focuses on the instances that were misclassified by the previous ones.

The most common form of boosting is AdaBoost, which adjusts the weights of the training instances based on their classification errors. Specifically, if an instance is misclassified, its weight is increased, making it more significant for the next learner. Mathematically, the final prediction in boosting can be expressed as:

F(x)=∑m=1Mαmhm(x)F(x) = \sum_{m=1}^{M} \alpha_m h_m(x)F(x)=m=1∑M​αm​hm​(x)

where F(x)F(x)F(x) is the final model, hm(x)h_m(x)hm​(x) represents the weak learners, and αm\alpha_mαm​ denotes the weight assigned to each learner based on its accuracy. This method not only enhances accuracy but also helps in reducing overfitting, making boosting a widely used technique in various applications, including classification and regression tasks.

Mahler Measure

The Mahler Measure is a concept from number theory and algebraic geometry that provides a way to measure the complexity of a polynomial. Specifically, for a given polynomial P(x)=anxn+an−1xn−1+…+a0P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0P(x)=an​xn+an−1​xn−1+…+a0​ with ai∈Ca_i \in \mathbb{C}ai​∈C, the Mahler Measure M(P)M(P)M(P) is defined as:

M(P)=∣an∣∏i=1nmax⁡(1,∣ri∣),M(P) = |a_n| \prod_{i=1}^{n} \max(1, |r_i|),M(P)=∣an​∣i=1∏n​max(1,∣ri​∣),

where rir_iri​ are the roots of the polynomial P(x)P(x)P(x). This measure captures both the leading coefficient and the size of the roots, reflecting the polynomial's growth and behavior. The Mahler Measure has applications in various areas, including transcendental number theory and the study of algebraic numbers. Additionally, it serves as a tool to examine the distribution of polynomials in the complex plane and their relation to Diophantine equations.

Cointegration

Cointegration is a statistical property of a collection of time series variables which indicates that a linear combination of them behaves like a stationary series, even though the individual series themselves are non-stationary. In simpler terms, two or more non-stationary time series can be said to be cointegrated if they share a common stochastic trend. This is crucial in econometrics, as it implies a long-term equilibrium relationship despite short-term fluctuations.

To determine if two series xtx_txt​ and yty_tyt​ are cointegrated, we can use the Engle-Granger two-step method. First, we regress yty_tyt​ on xtx_txt​ to obtain the residuals u^t\hat{u}_tu^t​. Next, we test these residuals for stationarity using methods like the Augmented Dickey-Fuller test. If the residuals are stationary, we conclude that xtx_txt​ and yty_tyt​ are cointegrated, indicating a meaningful relationship that can be exploited for forecasting or economic modeling.