StudierendeLehrende

Giffen Paradox

Das Giffen-Paradox beschreibt ein ökonomisches Phänomen, bei dem der Preis eines Gutes steigt, während die nachgefragte Menge ebenfalls zunimmt, was den klassischen Gesetzen von Angebot und Nachfrage widerspricht. Typischerweise handelt es sich um ein inferiores Gut, dessen Nachfrage steigt, wenn das Einkommen der Konsumenten sinkt. Ein klassisches Beispiel ist Brot: Wenn der Preis für Brot steigt, könnten arme Haushalte gezwungen sein, weniger von teureren Lebensmitteln zu kaufen und stattdessen mehr Brot zu konsumieren, um ihre Ernährung aufrechtzuerhalten. Dies führt dazu, dass die Nachfrage nach Brot trotz des Preisanstiegs steigt, was dem Konzept der substituierenden Güter widerspricht. Das Giffen-Paradox zeigt, wie komplex die Zusammenhänge zwischen Preis, Einkommen und Nachfragemustern in der Wirtschaft sein können.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Multi-Agent Deep Rl

Multi-Agent Deep Reinforcement Learning (MADRL) ist ein Bereich des maschinellen Lernens, der sich mit der Interaktion und Koordination mehrerer Agenten in einer gemeinsamen Umgebung beschäftigt. Diese Agenten lernen, durch Interaktionen mit der Umwelt und untereinander, optimale Strategien zu entwickeln, um bestimmte Ziele zu erreichen. Im Gegensatz zu traditionellen Reinforcement-Learning-Ansätzen, die sich auf einen einzelnen Agenten konzentrieren, erfordert MADRL die Berücksichtigung von Kooperation und Wettbewerb zwischen den Agenten.

Die Herausforderung besteht darin, dass die Entscheidungen eines Agenten nicht nur seine eigene Belohnung beeinflussen, sondern auch die der anderen Agenten. Oft wird ein tiefes neuronales Netzwerk verwendet, um die Policy oder den Wert eines Agenten in einer hochdimensionalen Aktions- und Zustandsumgebung zu approximieren. Die mathematische Formulierung eines MADRL-Problems kann durch die Verwendung von Spieltheorie unterstützt werden, wobei die Auszahlung für jeden Agenten als Funktion der Strategien aller Agenten definiert ist. Das Ziel ist es, in einer dynamischen und oft nicht-stationären Umgebung zu lernen, in der die Strategien der anderen Agenten die optimale Strategie eines jeden Agenten beeinflussen.

UCB-Algorithmus in Mehrarmigen Banditen

Der UCB-Algorithmus (Upper Confidence Bound) ist eine effektive Strategie zur Lösung des Multi-Armed Bandit-Problems, das in der Entscheidungsfindung und im maschinellen Lernen häufig vorkommt. Bei diesem Problem steht ein Agent vor der Wahl, aus mehreren Optionen (Armen) zu wählen, wobei jede Option eine unbekannte Belohnungsverteilung hat. Der UCB-Algorithmus verfolgt einen explorativen Ansatz, indem er sowohl die mittlere Belohnung jeder Option als auch die Unsicherheit über diese Schätzungen berücksichtigt.

Die zentrale Idee des UCB-Algorithmus besteht darin, eine obere Schranke für die geschätzte Belohnung jeder Option zu berechnen, die sowohl die bisherige Leistung als auch die Anzahl der Male, die die Option gewählt wurde, einbezieht. Diese Schranke wird wie folgt definiert:

UCBt(a)=X^t(a)+2ln⁡tNt(a)UCB_t(a) = \hat{X}_t(a) + \sqrt{\frac{2 \ln t}{N_t(a)}}UCBt​(a)=X^t​(a)+Nt​(a)2lnt​​

Hierbei ist X^t(a)\hat{X}_t(a)X^t​(a) die geschätzte durchschnittliche Belohnung der Option aaa zum Zeitpunkt ttt, Nt(a)N_t(a)Nt​(a) die Anzahl der Ziehungen von Option aaa, und ln⁡t\ln tlnt der natürliche Logarithmus von ttt. Der Agent wählt dann

Nanotubenfunktionalisierung

Die Functionalization von Nanoröhren bezieht sich auf die chemische Modifikation der Oberflächen von Kohlenstoffnanoröhren (CNTs), um deren Eigenschaften zu verbessern und ihre Anwendbarkeit in verschiedenen Bereichen zu erweitern. Diese Modifikation kann durch verschiedene Methoden erfolgen, wie z.B. Chemische Anlagerung, Plasma-Behandlung oder physikalische Dampfabscheidung. Durch die Functionalization können spezifische funktionelle Gruppen, wie Carboxyl, Amin oder Hydroxyl, an die Oberfläche der Nanoröhren gebunden werden, was zu einer verbesserten Dispersion, Kompatibilität und Reaktivität führt. Darüber hinaus kann die Functionalization die Interaktion der Nanoröhren mit biologischen oder chemischen Substanzen optimieren, was sie besonders wertvoll für Anwendungen in der Medizin, Sensorik und Materialwissenschaft macht. Insgesamt spielt die Functionalization eine entscheidende Rolle bei der Entwicklung neuer Materialien und Technologien, die auf Nanoröhren basieren.

Flexible Perowskit-Photovoltaik

Flexible Perovskite-Photovoltaik ist eine innovative Technologie, die auf Perovskit-Materialien basiert, um Sonnenlicht in elektrische Energie umzuwandeln. Diese Materialien zeichnen sich durch ihre hohe Lichtabsorption und gute Elektronentransport-Eigenschaften aus, was zu einer hohen Effizienz bei der Umwandlung von Sonnenlicht führt. Im Gegensatz zu herkömmlichen Silizium-Solarzellen können flexible Perovskite-Module auf leichten und biegsamen Substraten hergestellt werden, wodurch sie vielseitig einsetzbar sind, z.B. in tragbaren Geräten oder auf gewölbten Oberflächen.

Ein weiterer Vorteil dieser Technologie ist die potenzielle Kostensenkung bei der Herstellung, da die Materialien oft einfacher und mit weniger Energieaufwand produziert werden können. Dennoch stehen flexible Perovskite-Photovoltaik-Anwendungen Herausforderungen gegenüber, insbesondere hinsichtlich der Stabilität und Langzeitbeständigkeit der Materialien unter realen Umweltbedingungen.

Multijunction-Solarzellenphysik

Multijunction-Solarzellen sind fortschrittliche photovoltaische Materialien, die aus mehreren Schichten bestehen, die jeweils auf verschiedene Wellenlängen des Sonnenlichts abgestimmt sind. Diese Schichten sind so konzipiert, dass sie die Absorption des Lichts maximieren und die Effizienz der Umwandlung von Sonnenenergie in elektrische Energie erhöhen. Der Hauptvorteil dieser Technologie liegt in ihrer Fähigkeit, die Bandlücken der Materialien gezielt zu wählen, sodass jede Schicht die Energie eines bestimmten Teils des Lichtspektrums nutzen kann.

Ein typisches Beispiel ist die Verwendung von Materialien wie Galliumarsenid (GaAs) für die obere Schicht und Indiumgalliumphosphid (InGaP) für die mittlere Schicht. Dabei folgt die Effizienz oft einer Beziehung, die durch die Schichten und deren Bandlücken definiert ist. Die theoretische maximale Effizienz einer Multijunction-Solarzelle kann bis zu 45% erreichen, verglichen mit nur etwa 20% für herkömmliche einlagige Solarzellen, da sie einen größeren Teil des Spektrums des Sonnenlichts effektiv nutzen können.

Monopolistische Konkurrenz

Monopolistische Konkurrenz ist ein Marktstrukturtyp, der Merkmale sowohl eines Monopols als auch eines Wettbewerbs aufweist. In diesem Markt gibt es viele Anbieter, die ähnliche, aber nicht identische Produkte anbieten, was den Unternehmen die Möglichkeit gibt, Preise unabhängig zu setzen. Jedes Unternehmen hat eine gewisse Marktmacht, da die Produkte differenziert sind, was bedeutet, dass sie nicht perfekt substituierbar sind.

Ein weiteres wichtiges Merkmal ist der freie Marktzugang, was bedeutet, dass neue Unternehmen relativ einfach in den Markt eintreten oder ihn verlassen können. Dies führt zu einem langfristigen Gleichgewicht, in dem die Gewinne der Unternehmen tendieren, gegen null zu gehen, da neue Anbieter in den Markt eintreten, wenn bestehende Anbieter überdurchschnittliche Gewinne erzielen. Die Preise in einem monopolistischen Wettbewerb liegen typischerweise über den Grenzkosten, was zu einer ineffizienten Allokation von Ressourcen führt.