StudentsEducators

Markov Decision Processes

A Markov Decision Process (MDP) is a mathematical framework used to model decision-making in situations where outcomes are partly random and partly under the control of a decision maker. An MDP is defined by a tuple (S,A,P,R,γ)(S, A, P, R, \gamma)(S,A,P,R,γ), where:

  • SSS is a set of states.
  • AAA is a set of actions available to the agent.
  • PPP is the state transition probability, denoted as P(s′∣s,a)P(s'|s,a)P(s′∣s,a), which represents the probability of moving to state s′s's′ from state sss after taking action aaa.
  • RRR is the reward function, R(s,a)R(s,a)R(s,a), which assigns a numerical reward for taking action aaa in state sss.
  • γ\gammaγ (gamma) is the discount factor, a value between 0 and 1 that represents the importance of future rewards compared to immediate rewards.

The goal in an MDP is to find a policy π\piπ, which is a strategy that specifies the action to take in each state, maximizing the expected cumulative reward over time. MDPs are foundational in fields such as reinforcement learning and operations research, providing a systematic way to evaluate and optimize decision processes under uncertainty.

Other related terms

contact us

Let's get started

Start your personalized study experience with acemate today. Sign up for free and find summaries and mock exams for your university.

logoTurn your courses into an interactive learning experience.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Terms and Conditions  |   Privacy Policy  |   Imprint  |   Careers   |  
iconlogo
Log in

Nyquist Stability

Nyquist Stability is a fundamental concept in control theory that helps assess the stability of a feedback system. It is based on the Nyquist criterion, which involves analyzing the open-loop frequency response of a system. The key idea is to plot the Nyquist plot, which represents the complex values of the system's transfer function as the frequency varies from −∞-\infty−∞ to +∞+\infty+∞.

A system is considered stable if the Nyquist plot encircles the point −1+j0-1 + j0−1+j0 in the complex plane a number of times equal to the number of poles of the open-loop transfer function that are located in the right-half of the complex plane. Specifically, if NNN is the number of clockwise encirclements of the point −1-1−1 and PPP is the number of poles in the right-half plane, the Nyquist stability criterion states that:

N=PN = PN=P

This relationship allows engineers and scientists to determine the stability of a control system without needing to derive its characteristic equation directly.

Arrow’S Theorem

Arrow's Theorem, formuliert von Kenneth Arrow in den 1950er Jahren, ist ein fundamentales Ergebnis der Sozialwahltheorie, das die Herausforderungen bei der Aggregation individueller Präferenzen zu einer kollektiven Entscheidung beschreibt. Es besagt, dass es unter bestimmten Bedingungen unmöglich ist, eine Wahlregel zu finden, die eine Reihe von wünschenswerten Eigenschaften erfüllt. Diese Eigenschaften sind: Nicht-Diktatur, Vollständigkeit, Transitivität, Unabhängigkeit von irrelevanten Alternativen und Pareto-Effizienz.

Das bedeutet, dass selbst wenn Wähler ihre Präferenzen unabhängig und rational ausdrücken, es keine Wahlmethode gibt, die diese Bedingungen für alle möglichen Wählerpräferenzen gleichzeitig erfüllt. In einfacher Form führt Arrow's Theorem zu der Erkenntnis, dass die Suche nach einer "perfekten" Abstimmungsregel, die die kollektiven Präferenzen fair und konsistent darstellt, letztlich zum Scheitern verurteilt ist.

Schrödinger Equation

The Schrödinger Equation is a fundamental equation in quantum mechanics that describes how the quantum state of a physical system changes over time. It is a key result that encapsulates the principles of wave-particle duality and the probabilistic nature of quantum systems. The equation can be expressed in two main forms: the time-dependent Schrödinger equation and the time-independent Schrödinger equation.

The time-dependent form is given by:

iℏ∂∂tΨ(x,t)=H^Ψ(x,t)i \hbar \frac{\partial}{\partial t} \Psi(x, t) = \hat{H} \Psi(x, t)iℏ∂t∂​Ψ(x,t)=H^Ψ(x,t)

where Ψ(x,t)\Psi(x, t)Ψ(x,t) is the wave function of the system, iii is the imaginary unit, ℏ\hbarℏ is the reduced Planck's constant, and H^\hat{H}H^ is the Hamiltonian operator representing the total energy of the system. The wave function Ψ\PsiΨ provides all the information about the system, including the probabilities of finding a particle in various positions and states. The time-independent form is often used for systems in a stationary state and is expressed as:

H^Ψ(x)=EΨ(x)\hat{H} \Psi(x) = E \Psi(x)H^Ψ(x)=EΨ(x)

where EEE represents the energy eigenvalues. Overall, the Schrödinger Equation is crucial for predicting the behavior of quantum systems and has profound implications in fields ranging from chemistry to quantum computing.

Runge-Kutta Stability Analysis

Runge-Kutta Stability Analysis refers to the examination of the stability properties of numerical methods, specifically the Runge-Kutta family of methods, used for solving ordinary differential equations (ODEs). Stability in this context indicates how errors in the numerical solution behave as computations progress, particularly when applied to stiff equations or long-time integrations.

A common approach to analyze stability involves examining the stability region of the method in the complex plane, which is defined by the values of the stability function R(z)R(z)R(z). Typically, this function is derived from a test equation of the form y′=λyy' = \lambda yy′=λy, where λ\lambdaλ is a complex parameter. The method is stable for values of zzz (where z=hλz = h \lambdaz=hλ and hhh is the step size) that lie within the stability region.

For instance, the classical fourth-order Runge-Kutta method has a relatively large stability region, making it suitable for a wide range of problems, while implicit methods, such as the backward Euler method, can handle stiffer equations effectively. Understanding these properties is crucial for choosing the right numerical method based on the specific characteristics of the differential equations being solved.

Huygens Principle

Huygens' Principle, formulated by the Dutch physicist Christiaan Huygens in the 17th century, states that every point on a wavefront can be considered as a source of secondary wavelets. These wavelets spread out in all directions at the same speed as the original wave. The new wavefront at a later time can be constructed by taking the envelope of these wavelets. This principle effectively explains the propagation of waves, including light and sound, and is fundamental in understanding phenomena such as diffraction and interference.

In mathematical terms, if we denote the wavefront at time t=0t = 0t=0 as W0W_0W0​, then the position of the new wavefront WtW_tWt​ at a later time ttt can be expressed as the collective influence of all the secondary wavelets originating from points on W0W_0W0​. Thus, Huygens' Principle provides a powerful method for analyzing wave behavior in various contexts.

Hermite Polynomial

Hermite polynomials are a set of orthogonal polynomials that arise in probability, combinatorics, and physics, particularly in the context of quantum mechanics and the solution of differential equations. They are defined by the recurrence relation:

Hn(x)=2xHn−1(x)−2(n−1)Hn−2(x)H_n(x) = 2xH_{n-1}(x) - 2(n-1)H_{n-2}(x)Hn​(x)=2xHn−1​(x)−2(n−1)Hn−2​(x)

with the initial conditions H0(x)=1H_0(x) = 1H0​(x)=1 and H1(x)=2xH_1(x) = 2xH1​(x)=2x. The nnn-th Hermite polynomial can also be expressed in terms of the exponential function and is given by:

Hn(x)=(−1)nex2/2dndxne−x2/2H_n(x) = (-1)^n e^{x^2/2} \frac{d^n}{dx^n} e^{-x^2/2}Hn​(x)=(−1)nex2/2dxndn​e−x2/2

These polynomials are orthogonal with respect to the weight function w(x)=e−x2w(x) = e^{-x^2}w(x)=e−x2 on the interval (−∞,∞)(- \infty, \infty)(−∞,∞), meaning that:

∫−∞∞Hm(x)Hn(x)e−x2 dx=0for m≠n\int_{-\infty}^{\infty} H_m(x) H_n(x) e^{-x^2} \, dx = 0 \quad \text{for } m \neq n∫−∞∞​Hm​(x)Hn​(x)e−x2dx=0for m=n

Hermite polynomials play a crucial role in the formulation of the quantum harmonic oscillator and in the study of Gaussian integrals, making them significant in both theoretical and applied