StudierendeLehrende

Endogenous Money Theory Post-Keynesian

Die Endogenous Money Theory (EMT) im postkeynesianischen Ansatz besagt, dass das Geldangebot nicht exogen, sondern endogen bestimmt wird. Das bedeutet, dass Banken Geld schaffen, indem sie Kredite vergeben, was der Nachfrage nach Krediten entspricht. In diesem Modell wird das Geldangebot durch die wirtschaftlichen Aktivitäten und die Bedürfnisse der Unternehmen und Haushalte beeinflusst.

Im Gegensatz zur klassischen Sichtweise, die annimmt, dass die Zentralbank die Geldmenge unabhängig von der Nachfrage steuert, argumentiert die EMT, dass die Zentralbank eher als Regulator auftritt, der die Bedingungen für die Geldschöpfung durch die Banken festlegt. Dies führt zu einem dynamischen Prozess, in dem die Geldmenge sich an die ökonomischen Gegebenheiten anpasst, was wiederum die Gesamtwirtschaft beeinflusst. Ein zentrales Konzept ist, dass die Zinsen nicht einfach durch das Geldangebot bestimmt werden, sondern auch durch die Nachfrage nach Kreditmitteln und die Risikobewertung von Kreditnehmern.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Resnet-Architektur

Die Resnet-Architektur (Residual Network) wurde entwickelt, um das Problem der vanishing gradients in tiefen neuronalen Netzwerken zu lösen. Sie führt das Konzept der Residualverbindungen ein, bei denen der Eingang einer Schicht direkt zur Ausgabe hinzugefügt wird, was als F(x)+x\mathcal{F}(x) + xF(x)+x ausgedrückt wird, wobei F(x)\mathcal{F}(x)F(x) die Funktion der Schicht ist. Diese Verbindung ermöglicht es dem Netzwerk, leichter tiefere Schichten zu trainieren, da es die Information der vorherigen Schichten direkt weiterleiten kann. Resnets bestehen aus mehreren solcher Residualblöcke, die es dem Modell ermöglichen, sehr tief zu sein (z. B. 50, 101 oder sogar 152 Schichten), ohne dass die Leistung leidet. Ein weiterer Vorteil der Resnet-Architektur ist die verbesserte Generalisation, die oft zu besseren Ergebnissen bei Bildklassifizierungsaufgaben führt.

Kolmogorov-Turbulenz

Die Kolmogorov-Turbulenz ist ein fundamentales Konzept in der Turbulenzforschung, das von dem sowjetischen Mathematiker Andrei Kolmogorov in den 1940er Jahren formuliert wurde. Sie beschreibt die statistischen Eigenschaften von turbulenten Strömungen, insbesondere die Energieverteilung in verschiedenen Skalen. Kolmogorovs Theorie postuliert, dass in einer vollständig entwickelten turbulenten Strömung die kinetische Energie, die durch die großen Wirbel erzeugt wird, in kleinere Wirbel zerfällt, die die Energie dann über eine Vielzahl von kleineren Skalen transportieren.

Ein zentrales Ergebnis ist die sogenannte Energie-Kolmogorov-Spektralverteilung, die angibt, dass die Energie E(k)E(k)E(k) in Abhängigkeit von der Wellenzahl kkk wie folgt verteilt ist:

E(k)∝k−5/3E(k) \propto k^{-5/3}E(k)∝k−5/3

Diese Beziehung zeigt, dass kleinere Wirbel weniger Energie enthalten als größere, was zu einer charakteristischen Energieverteilung in turbulenten Strömungen führt. Die Kolmogorov-Turbulenz hat weitreichende Anwendungen in verschiedenen Bereichen, wie der Meteorologie, der Ozeanographie und der Luftfahrttechnik, da sie ein grundlegendes Verständnis für die Dynamik turbulent fließender Flüssigkeiten bietet.

Fermi-Paradoxon

Das Fermi-Paradoxon beschreibt das scheinbare Widerspruchsverhältnis zwischen der hohen Wahrscheinlichkeit der Existenz von intelligentem Leben im Universum und der fehlenden Evidenz für dessen Kontakt oder Beobachtungen. Angesichts der enormen Anzahl von Sternen in unserer Galaxie, von denen viele Planeten besitzen, würde man annehmen, dass extraterrestrische Zivilisationen weit verbreitet sind. Doch trotz zahlreicher astronomischer Beobachtungen und der Suche nach Radiosignalen oder anderen Indikatoren für Leben, bleibt der Nachweis aus.

Einige der möglichen Erklärungen für dieses Paradoxon sind:

  • Seltenheit von intelligentem Leben: Vielleicht sind die Bedingungen für die Entstehung von intelligentem Leben extrem selten.
  • Technologische Selbstzerstörung: Zivilisationen könnten dazu neigen, sich selbst durch Krieg oder Umweltzerstörung zu vernichten, bevor sie interstellar kommunizieren können.
  • Die große Distanz: Die riesigen Entfernungen im Universum könnten es intelligenten Zivilisationen erschweren, sich zu begegnen oder zu kommunizieren.

Das Fermi-Paradoxon bleibt ein faszinierendes und ungelöstes Problem in der Astronomie und der Suche nach extraterrestrischem Leben.

Chebyshev-Filter

Ein Chebyshev-Filter ist ein elektronisches Filter, das in der Signalverarbeitung verwendet wird, um bestimmte Frequenzen zu verstärken oder zu dämpfen. Im Vergleich zu anderen Filtertypen, wie dem Butterworth-Filter, bietet der Chebyshev-Filter eine steilere Übergangscharakteristik, was bedeutet, dass er Frequenzen außerhalb des gewünschten Bereichs schneller attenuiert. Es gibt zwei Haupttypen von Chebyshev-Filtern: Typ I, der eine gleichmäßige Ripple im Passband aufweist, und Typ II, der eine Ripple im Stopband hat.

Die mathematische Beschreibung eines Chebyshev-Filters kann durch die Übertragungsfunktion H(s)H(s)H(s) dargestellt werden, die die Frequenzantwort des Filters beschreibt. Der Filter wird häufig in Anwendungen eingesetzt, in denen die Phasengenauigkeit weniger wichtig ist, aber eine hohe Filtergüte erforderlich ist. Die Verwendung eines Chebyshev-Filters ist besonders vorteilhaft in der digitalen Signalverarbeitung, da er die Möglichkeit bietet, Frequenzen präzise zu kontrollieren und Rauschen effektiv zu reduzieren.

Edge-Computing-Architektur

Edge Computing Architecture bezieht sich auf ein dezentrales Rechenmodell, bei dem Datenverarbeitung und Analyse näher an der Quelle der Datenerzeugung stattfinden, anstatt in zentralisierten Cloud-Rechenzentren. Dies geschieht häufig durch die Nutzung von Edge-Geräten, die an verschiedenen Standorten, wie zum Beispiel IoT-Geräten, Sensoren oder lokalen Servern, platziert sind. Die Hauptvorteile dieser Architektur sind reduzierte Latenzzeiten, da Daten nicht über große Entfernungen gesendet werden müssen, sowie eine erhöhte Bandbreitenoptimierung, da nur relevante Daten an die Cloud gesendet werden.

Die Edge Computing Architecture kann in folgende Schichten unterteilt werden:

  1. Edge Layer: Umfasst die physischen Geräte und Sensoren, die Daten erzeugen.
  2. Edge Processing Layer: Hier findet die erste Datenverarbeitung statt, oft direkt auf den Geräten oder in der Nähe.
  3. Data Aggregation Layer: Diese Schicht aggregiert und filtert die Daten, bevor sie an die Cloud gesendet werden.
  4. Cloud Layer: Bietet eine zentrale Plattform für tiefere Analysen und langfristige Datenspeicherung.

Durch diese Struktur wird nicht nur die Effizienz erhöht, sondern auch die Sicherheit verbessert, da sensible Daten lokal verarbeitet werden können.

Lebesgue-Integral

Das Lebesgue Integral ist ein fundamentales Konzept in der modernen Analysis, das eine Erweiterung des klassischen Riemann-Integrals darstellt. Es ermöglicht die Integration von Funktionen, die in bestimmten Aspekten komplizierter sind, insbesondere wenn diese Funktionen nicht unbedingt stetig oder beschränkt sind. Der Hauptunterschied zwischen dem Lebesgue- und dem Riemann-Integral liegt in der Art und Weise, wie die Fläche unter einer Kurve berechnet wird. Während das Riemann-Integral die Fläche durch die Zerlegung des Intervalls in kleinere Abschnitte ermittelt, basiert das Lebesgue-Integral auf der Zerlegung des Wertebereichs der Funktion und der Messung der Menge der Punkte, die diesen Werten zugeordnet sind.

Die grundlegenden Schritte zur Berechnung eines Lebesgue-Integrals sind:

  1. Bestimmung der Menge, auf der die Funktion definiert ist.
  2. Messung der Menge der Werte, die die Funktion annimmt.
  3. Anwendung des Integrationsprozesses auf diese Mengen.

Mathematisch wird das Lebesgue-Integral einer messbaren Funktion fff über eine Menge EEE als folgt definiert:

∫Ef dμ=∫−∞∞f(x) dμ(x)\int_E f \, d\mu = \int_{-\infty}^{\infty} f(x) \, d\mu(x)∫E​fdμ=∫−∞∞​f(x)dμ(x)

wobei μ\muμ eine Maßfunktion