StudierendeLehrende

Gradient Descent

Gradient Descent ist ein optimierungsbasiertes Verfahren, das häufig in der maschinellen Intelligenz und Statistik verwendet wird, um die minimalen Werte einer Funktion zu finden. Es funktioniert, indem es den Gradienten (d.h. die Ableitung) der Funktion an einem bestimmten Punkt berechnet und dann in die entgegengesetzte Richtung des Gradienten geht, um die Kostenfunktion zu minimieren. Mathematisch ausgedrückt wird die Aktualisierung des Parameters θ\thetaθ durch die Gleichung

θneu=θalt−α∇J(θ)\theta_{\text{neu}} = \theta_{\text{alt}} - \alpha \nabla J(\theta)θneu​=θalt​−α∇J(θ)

bestimmt, wobei α\alphaα die Lernrate und ∇J(θ)\nabla J(\theta)∇J(θ) der Gradient der Verlustfunktion ist. Der Prozess wird iterativ wiederholt, bis eine Konvergenz erreicht wird oder die Funktion ausreichend minimiert ist. Gradient Descent kann in verschiedenen Varianten auftreten, wie zum Beispiel stochastic, mini-batch oder batch, wobei jede Variante unterschiedliche Vor- und Nachteile in Bezug auf Rechenaufwand und Konvergenzgeschwindigkeit hat.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Taylor-Expansion

Die Taylor Expansion ist ein fundamentales Konzept in der Mathematik, das es ermöglicht, eine Funktion f(x)f(x)f(x) in der Nähe eines Punktes aaa als unendliche Summe von Potenzen von (x−a)(x - a)(x−a) darzustellen. Diese Darstellung ist besonders nützlich, um Funktionen zu approximieren, die schwer direkt zu berechnen sind. Die allgemeine Form der Taylorreihe lautet:

f(x)=f(a)+f′(a)(x−a)+f′′(a)2!(x−a)2+f′′′(a)3!(x−a)3+…f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \ldotsf(x)=f(a)+f′(a)(x−a)+2!f′′(a)​(x−a)2+3!f′′′(a)​(x−a)3+…

Hierbei sind f′(a),f′′(a),f′′′(a)f'(a), f''(a), f'''(a)f′(a),f′′(a),f′′′(a) die Ableitungen der Funktion fff an der Stelle aaa und n!n!n! ist die Fakultät von nnn. Die Taylor Expansion ist besonders nützlich in der Numerischen Mathematik und in den Ingenieurwissenschaften, da sie es ermöglicht, komplexe Funktionen als einfache Polynome zu verwenden, die leicht zu handhaben sind. Bei der Approximation ist es wichtig zu beachten, dass die Konvergenz der Reihe von der Funktion und dem gewählten Punkt aaa abhängt.

Huygenssches Prinzip

Das Huygens-Prinzip ist eine fundamentale Theorie in der Wellenoptik, die von dem niederländischen Physiker Christiaan Huygens im 17. Jahrhundert formuliert wurde. Es besagt, dass jede Punktquelle einer Welle als Ausgangspunkt für neue, sekundäre Wellenfronten betrachtet werden kann. Diese sekundären Wellenfronten breiten sich mit der gleichen Geschwindigkeit und in alle Richtungen aus. Die Gesamtwellenfront zu einem späteren Zeitpunkt ergibt sich aus der Überlagerung dieser sekundären Wellenfronten. Mathematisch lässt sich das Prinzip durch die Beziehung S=∑i=1nSiS = \sum_{i=1}^{n} S_iS=∑i=1n​Si​ darstellen, wobei SSS die Gesamtsumme der Wellenfronten und SiS_iSi​ die einzelnen Wellenfronten sind. Dieses Prinzip hilft, Phänomene wie Beugung und Interferenz von Wellen zu erklären.

Support Vector

Support Vectors sind die Datenpunkte, die in der Nähe der Entscheidungsgrenze (oder Trennlinie) eines Klassifizierungsmodells liegen, insbesondere in Support Vector Machines (SVM). Diese Punkte sind entscheidend, da sie die Position der Trennlinie beeinflussen und somit die Klassifikation der anderen Datenpunkte bestimmen. Wenn man sich die Trennlinie als eine hyperplane (Hyperfläche) in einem mehrdimensionalen Raum vorstellt, dann sind die Support Vectors diejenigen Datenpunkte, die den minimalen Abstand zu dieser hyperplane haben.

Mathematisch wird der Abstand ddd eines Punktes xxx zu einer hyperplane beschrieben durch die Gleichung:

d=∣wTx+b∣∥w∥d = \frac{|w^T x + b|}{\|w\|}d=∥w∥∣wTx+b∣​

Hierbei ist www der Gewichtungsvektor und bbb der Bias. Wenn die Support Vectors entfernt werden, kann sich die Trennlinie ändern, was zu einer schlechteren Klassifikation führt. Daher sind sie von entscheidender Bedeutung für die Robustheit und Genauigkeit des Modells.

Lieferkette

Die Supply Chain oder Lieferkette bezeichnet das Netzwerk von Organisationen, Menschen, Aktivitäten, Informationen und Ressourcen, die an der Erstellung und Bereitstellung eines Produkts oder einer Dienstleistung beteiligt sind. Sie umfasst sämtliche Schritte vom Rohstoffabbau über die Produktion bis hin zur Auslieferung an den Endverbraucher. Eine effiziente Supply Chain ist entscheidend für die Kostensenkung und Wettbewerbsfähigkeit eines Unternehmens, da sie dazu beiträgt, die Produktionszeiten zu verkürzen und die Lagerbestände zu optimieren. Zu den Hauptkomponenten einer Supply Chain gehören:

  • Lieferanten: Stellen die benötigten Rohstoffe bereit.
  • Produzenten: Wandeln Rohstoffe in fertige Produkte um.
  • Distribution: Organisieren den Transport der Produkte zum Endkunden.

Die Überwachung und Optimierung der Supply Chain erfordert oft den Einsatz von Technologien wie Datenanalyse und Automatisierung, um die Effizienz und Transparenz zu erhöhen.

Schottky-Barriere-Diode

Die Schottky Barrier Diode ist eine spezielle Art von Halbleiterdiode, die durch die Verbindung eines Metalls mit einem Halbleitermaterial, üblicherweise n-dotiertem Silizium, entsteht. Diese Diode zeichnet sich durch eine geringe Vorwärtsspannung und eine schnelle Schaltgeschwindigkeit aus, was sie ideal für Anwendungen in Hochfrequenz- und Leistungselektronik macht. Die Schottky-Diode hat im Vergleich zu herkömmlichen pn-Übergangs-Dioden einen niedrigeren Schaltdurchlassverlust, was sie besonders effizient macht.

Die charakteristische Schottky-Barriere, die sich an der Grenzfläche zwischen Metall und Halbleiter bildet, bestimmt die Höhe der Durchlassspannung, die typischerweise zwischen 0,2 V und 0,4 V liegt. In mathematischer Form kann die Schottky-Barrierehöhe ΦB\Phi_BΦB​ durch die Beziehung

ΦB=kTqln⁡(I0I+1)\Phi_B = \frac{kT}{q} \ln\left(\frac{I_0}{I} + 1\right)ΦB​=qkT​ln(II0​​+1)

beschrieben werden, wobei kkk die Boltzmann-Konstante, TTT die Temperatur in Kelvin, qqq die Elementarladung, I0I_0I0​ der Sättigungsstrom und $I\

Analyse der funktionalen Konnektivität des Gehirns

Die Brain Functional Connectivity Analysis (BFCA) ist ein Verfahren zur Untersuchung der funktionalen Interaktionen zwischen verschiedenen Regionen des Gehirns. Sie basiert auf der Annahme, dass aktive Gehirnregionen in einem synchronisierten Muster arbeiten, was durch die Analyse von Bildgebungsdaten, wie z.B. fMRI oder EEG, erfasst werden kann. Diese Analyse ermöglicht es, Netzwerke innerhalb des Gehirns zu identifizieren, die an verschiedenen kognitiven Prozessen beteiligt sind.

Typische Methoden zur Durchführung von BFCA umfassen Korrelationsanalysen, bei denen die zeitlichen Aktivitätsmuster zweier oder mehrerer Regionen verglichen werden. Oft werden die Ergebnisse in Form von Netzwerkgraphen dargestellt, bei denen Knoten die Gehirnregionen und Kanten die funktionalen Verbindungen repräsentieren. Die BFCA hat Anwendungen in der Klinischen Neurowissenschaft, insbesondere bei der Untersuchung von neurologischen Störungen wie Schizophrenie oder Alzheimer, sowie in der Kognitionsforschung, um die zugrunde liegenden Mechanismen des Denkens und Verhaltens zu verstehen.