StudierendeLehrende

Hamming Bound

Der Hamming Bound ist eine wichtige Grenze in der Codierungstheorie, die angibt, wie viele Fehler ein Code korrigieren kann, ohne dass die Dekodierung fehlerhaft wird. Er definiert eine Beziehung zwischen der Codewortlänge nnn, der Anzahl der Fehler, die korrigiert werden können ttt, und der Anzahl der verwendeten Codewörter MMM. Mathematisch wird der Hamming Bound durch die folgende Ungleichung ausgedrückt:

M≤2n∑i=0t(ni)M \leq \frac{2^{n}}{\sum_{i=0}^{t} \binom{n}{i}}M≤∑i=0t​(in​)2n​

Hierbei ist (ni)\binom{n}{i}(in​) der Binomialkoeffizient, der die Anzahl der Möglichkeiten darstellt, iii Fehler in nnn Positionen zu wählen. Der Hamming Bound zeigt, dass die Anzahl der Codewörter in einem Fehlerkorrekturcode begrenzt ist, um sicherzustellen, dass die Codes eindeutig dekodiert werden können, auch wenn bis zu ttt Fehler auftreten. Wenn ein Code die Hamming-Grenze erreicht, wird er als perfekter Code bezeichnet, da er die maximale Anzahl an Codewörtern für eine gegebene Fehlerkorrekturfähigkeit nutzt.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Diffusions-Tensor-Bildgebung

Diffusion Tensor Imaging (DTI) ist eine spezielle Form der Magnetresonanztomographie (MRT), die die Bewegungen von Wassermolekülen im Gewebe analysiert, um die Struktur und Integrität von weißen Hirnsubstanz zu visualisieren. Durch die Messung der Diffusion von Wasser in verschiedenen Richtungen ermöglicht DTI, die Ausrichtung und das Muster der Nervenfasern im Gehirn zu bestimmen. In der weißen Substanz diffundieren Wasser-Moleküle tendenziell entlang der Nervenfasern, was als anisotrope Diffusion bezeichnet wird. Anhand der gewonnenen Daten kann ein Diffusionstensor erstellt werden, der eine mathematische Beschreibung der Diffusion in drei Dimensionen liefert. Die wichtigsten Parameter, die aus DTI extrahiert werden, sind der Fractional Anisotropy (FA), der die Struktur der Nervenbahnen bewertet, und die Mean Diffusivity (MD), die allgemeine Wasserbewegung im Gewebe beschreibt. DTI hat bedeutende Anwendungen in der Neurologie, insbesondere zur Untersuchung von Erkrankungen wie Multipler Sklerose, Schlaganfällen und traumatischen Hirnverletzungen.

Majorana-Fermion-Detektion

Die Detektion von Majorana-Fermionen ist ein bedeutendes Forschungsgebiet in der Quantenphysik und Materialwissenschaft, da diese Teilchen potenziell als Quantenbits für die Quantencomputing-Technologie genutzt werden können. Majorana-Fermionen sind spezielle Teilchen, die sich selbst als ihre eigenen Antiteilchen verhalten, was bedeutet, dass sie einzigartige Eigenschaften im Vergleich zu normalen Fermionen besitzen. Die Suche nach diesen Teilchen erfolgt typischerweise in supraleitenden Materialien oder topologischen Isolatoren, wo sie unter bestimmten Bedingungen entstehen können.

Experimentell werden meist Techniken wie Streuexperimente, Spin-Polarisation und Tunneling-Messungen eingesetzt, um die charakteristischen Signaturen von Majorana-Fermionen zu identifizieren. Ein wichtiges Kriterium für ihre Detektion ist die Beobachtung von zero-bias peaks in der elektrischen Leitfähigkeit, die auf die Präsenz dieser exotischen Teilchen hinweisen können. Der Nachweis von Majorana-Fermionen könnte nicht nur unser Verständnis der Quantenmechanik erweitern, sondern auch revolutionäre Fortschritte in der Quanteninformationstechnologie ermöglichen.

Graphen-basierte Feldeffekttransistoren

Graphenbasierte Feldeffekttransistoren (GFETs) sind eine innovative Art von Transistoren, die Graphen als aktives Material verwenden. Graphen ist eine einlagige Struktur aus Kohlenstoffatomen, die in einem zweidimensionalen Gitter angeordnet sind und außergewöhnliche elektrische, thermische und mechanische Eigenschaften aufweisen. GFETs nutzen die hohe Beweglichkeit der Elektronen in Graphen, was zu schnellen Schaltzeiten und geringer Energieverbrauch führt. Diese Transistoren können in verschiedenen Anwendungen eingesetzt werden, darunter in der Hochfrequenztechnik, der Sensorik und in der flexiblen Elektronik. Ein entscheidendes Merkmal von GFETs ist die Möglichkeit, die Leitfähigkeit durch das Anlegen eines elektrischen Feldes an das Graphenmaterial zu steuern, was sie zu einem vielversprechenden Kandidaten für zukünftige Transistor-Entwicklungen macht.

Neurotransmitter-Rezeptor-Mapping

Neurotransmitter Receptor Mapping bezieht sich auf die systematische Kartierung der verschiedenen Rezeptoren im Gehirn, die spezifische Neurotransmitter binden. Diese Methode ist entscheidend für das Verständnis der neuronalen Kommunikation und der Funktionsweise des zentralen Nervensystems. Durch den Einsatz von Techniken wie Positronen-Emissions-Tomographie (PET) und Magnetresonanztomographie (MRT) können Forscher die Verteilung und Dichte von Rezeptoren visualisieren. Die Ergebnisse dieser Mapping-Studien helfen, Zusammenhänge zwischen Rezeptoraktivität und verschiedenen neurologischen Erkrankungen zu erkennen, wie zum Beispiel Depressionen oder Schizophrenie. Ein wichtiger Aspekt ist auch die Untersuchung der Affinität von Neurotransmittern zu ihren Rezeptoren, was durch die Berechnung von Bindungsparametern erfolgt, die oft in der Form von
Kd=[L][R][RL]K_d = \frac{[L]}{[R][RL]}Kd​=[R][RL][L]​
dargestellt werden, wobei KdK_dKd​ die Dissoziationskonstante ist.

CPT-Symmetriebrechung

CPT-Symmetrie bezieht sich auf die Invarianz physikalischer Gesetze unter der gleichzeitigen Anwendung der drei Operationen: C (Charge), P (Parity) und T (Time Reversal). In der Quantenphysik wird angenommen, dass alle physikalischen Prozesse diese Symmetrie aufweisen. CPT-Symmetrie-Brechungen treten auf, wenn die physikalischen Gesetze in einem bestimmten Zustand nicht mehr die gleiche Symmetrie zeigen, was zu interessanten und oft unerwarteten Phänomenen führen kann.

Ein bekanntes Beispiel ist die Schwäche der CP-Symmetrie (eine Teilmenge von CPT), die im Rahmen der B-Meson-Physik beobachtet wurde. Diese Brechung spielt eine entscheidende Rolle im Verständnis der Materie-Antimaterie-Asymmetrie im Universum. Solche Brechungen können auch Auswirkungen auf die Stabilität von Materie und die Entwicklung des Universums haben, indem sie die zugrunde liegenden Symmetrien der Natur herausfordern.

Dijkstra vs. A*-Algorithmus

Der Dijkstra-Algorithmus und der A-Algorithmus* sind beide Suchalgorithmen, die verwendet werden, um den kürzesten Pfad in einem Graphen zu finden, unterscheiden sich jedoch in ihrer Funktionsweise und Effizienz. Der Dijkstra-Algorithmus basiert auf dem Prinzip, die kürzesten bekannten Distanzen zu jedem Punkt im Graphen schrittweise zu erweitern, ohne dabei eine Heuristik zu verwenden, was bedeutet, dass er in der Regel weniger effizient ist, insbesondere in großen oder komplexen Graphen.

Im Gegensatz dazu nutzt der A*-Algorithmus eine Heuristik, die eine Schätzung der verbleibenden Kosten zu dem Ziel einbezieht, um die Suche zu optimieren. Dies ermöglicht es dem A*-Algorithmus, viel schneller zu einem Ziel zu gelangen, indem er gezielt vielversprechende Pfade auswählt. Die allgemeine Kostenfunktion für den A*-Algorithmus lautet:

f(n)=g(n)+h(n)f(n) = g(n) + h(n)f(n)=g(n)+h(n)

wobei g(n)g(n)g(n) die Kosten vom Startknoten bis zum aktuellen Knoten und h(n)h(n)h(n) die geschätzten Kosten vom aktuellen Knoten bis zum Zielknoten sind. Zusammenfassend lässt sich sagen, dass der Dijkstra-Algorithmus für ungewichtete Graphen geeignet ist, während der A*-Algorithmus für gewichtete Graphen mit einer geeigneten