StudierendeLehrende

Magnetocaloric Effect

Der magnetokalorische Effekt beschreibt die Temperaturänderung eines Materials, wenn es in ein externes Magnetfeld gebracht wird oder dieses entfernt wird. Bei ferromagnetischen Materialien führt die Anordnung der magnetischen Momente unter dem Einfluss eines Magnetfeldes zu einer Änderung der thermodynamischen Eigenschaften. Wenn das Material in ein Magnetfeld gebracht wird, ordnen sich die magnetischen Momente parallel zum Feld aus, was eine Erwärmung des Materials zur Folge hat. Entfernt man das Magnetfeld, kehren die Momente in ihre ungeordnete Anordnung zurück, was zu einer Abkühlung führt.

Dieser Effekt wird in der Regel durch die Änderung der Entropie des Systems beschrieben und kann mathematisch durch die Beziehung zwischen Entropie SSS, Magnetfeld BBB und Temperatur TTT ausgedrückt werden. Besonders in der Kühltechnik wird der magnetokalorische Effekt genutzt, um effizientere Kühlsysteme zu entwickeln, die weniger Energie verbrauchen und umweltfreundlicher sind.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Lyapunov-Direktmethode

Die Lyapunov Direct Method ist ein Verfahren zur Analyse der Stabilität dynamischer Systeme. Sie basiert auf der Konstruktion einer Lyapunov-Funktion, die eine positive definite Funktion V(x)V(x)V(x) darstellt, die die Energie oder den Zustand eines Systems beschreibt. Um die Stabilität eines Gleichgewichts zu beweisen, wird gezeigt, dass die Ableitung dieser Funktion entlang der Trajektorien des Systems negativ definit ist, d.h., V˙(x)<0\dot{V}(x) < 0V˙(x)<0 für alle xxx in einer Umgebung des Gleichgewichts. Dies impliziert, dass das System zurück zu diesem Gleichgewichtszustand tendiert. Die Methode ist besonders nützlich, da sie oft ohne die explizite Lösung der Systemdifferentialgleichungen auskommt und sich auf die Eigenschaften der Lyapunov-Funktion konzentriert.

Leontief-Paradoxon

Das Leontief Paradox beschreibt ein unerwartetes Ergebnis in der internationalen Handelsökonomie, das von dem Ökonomen Wassily Leontief in den 1950er Jahren festgestellt wurde. Leontief untersuchte die Handelsströme der USA und erwartete, dass das Land, das reich an Kapital ist, hauptsächlich kapitalintensive Produkte exportieren und arbeitsintensive Produkte importieren würde. Überraschenderweise stellte er fest, dass die USA überwiegend arbeitsintensive Güter exportierten, während sie kapitalintensive Güter importierten. Dieses Ergebnis widerspricht dem Heckscher-Ohlin-Modell, das voraussagt, dass Länder gemäß ihrer Faktorausstattung (Kapital und Arbeit) handeln. Leontiefs Ergebnisse führten zu einer intensiven Debatte über die Determinanten des internationalen Handels und der Faktorausstattung, was die Komplexität der globalen Wirtschaft verdeutlicht.

Hierarchisches Reinforcement Learning

Hierarchical Reinforcement Learning (HRL) ist ein Ansatz im Bereich des maschinellen Lernens, der darauf abzielt, komplexe Entscheidungsprobleme durch die Einführung von Hierarchien zu lösen. Bei HRL wird ein Hauptziel in kleinere, überschaubarere Unterziele zerlegt, die als Subaufgaben bezeichnet werden. Dies ermöglicht es dem Agenten, Strategien auf verschiedenen Abstraktionsebenen zu entwickeln und zu optimieren.

Ein typisches HRL-Modell besteht aus zwei Hauptkomponenten: dem Manager und den Arbeitern. Der Manager entscheidet, welches Subziel der Agent als nächstes verfolgen soll, während die Arbeiter die spezifischen Aktionen zur Erreichung dieser Subziele ausführen. Durch diese Hierarchisierung kann der Lernprozess effizienter gestaltet werden, da der Agent nicht ständig alle möglichen Aktionen im gesamten Problembereich evaluieren muss, sondern sich auf die relevanten Teilprobleme konzentrieren kann.

Insgesamt bietet HRL eine vielversprechende Möglichkeit, die Komplexität im Reinforcement Learning zu reduzieren und die Lerngeschwindigkeit zu erhöhen, indem es die Struktur von Aufgaben nutzt.

Slutsky-Gleichung

Die Slutsky-Gleichung ist eine fundamentale Beziehung in der Mikroökonomie, die die Auswirkungen von Preisänderungen auf die Nachfrage nach Gütern beschreibt. Sie zerlegt die Gesamtwirkung einer Preisänderung in zwei Komponenten: den Substitutionseffekt und den Einkommenseffekt. Der Substitutionseffekt zeigt, wie sich die Nachfrage nach einem Gut ändert, wenn der Preis sinkt und der Konsument zu diesem Gut substituiert, während der Einkommenseffekt zeigt, wie sich die Nachfrage ändert, weil sich das reale Einkommen des Konsumenten aufgrund der Preisänderung verändert.

Mathematisch wird die Slutsky-Gleichung wie folgt ausgedrückt:

∂xi∂pj=∂hi∂pj−xj∂xi∂m\frac{\partial x_i}{\partial p_j} = \frac{\partial h_i}{\partial p_j} - x_j \frac{\partial x_i}{\partial m}∂pj​∂xi​​=∂pj​∂hi​​−xj​∂m∂xi​​

Hierbei steht xix_ixi​ für die nachgefragte Menge des Gutes iii, pjp_jpj​ für den Preis des Gutes jjj und mmm für das Einkommen des Konsumenten. Die Gleichung verdeutlicht, dass die Veränderung der Nachfrage nach Gut iii bezüglich der Preisänderung von Gut jjj sowohl von der Veränderung der optimalen Nachfrage als auch von der Veränderung des Einkommens abhängt. Die Slutsky

Laplace-Gleichungslösungen

Die Lösungen der Laplace-Gleichung, die mathematisch durch die Gleichung ∇2ϕ=0\nabla^2 \phi = 0∇2ϕ=0 beschrieben wird, spielen eine zentrale Rolle in verschiedenen Bereichen der Mathematik, Physik und Ingenieurwissenschaften. Diese Gleichung beschreibt Funktionen, die harmonisch sind, was bedeutet, dass sie in einem bestimmten Gebiet keine lokalen Extremwerte aufweisen. Lösungen der Laplace-Gleichung sind oft in Problemen der Elektrostatik, Fluiddynamik und Wärmeleitung zu finden und können durch verschiedene Methoden wie Separation der Variablen oder Verwendung von Fourier-Reihen gefunden werden.

Ein typisches Beispiel für eine Lösung ist die Darstellung der Potentialfelder, die durch punktuelle Quellen erzeugt werden. Die allgemeinen Lösungen können in Form von Potenzialfunktionen dargestellt werden, die in den meisten physikalischen Anwendungen die Form eines Superpositionsprinzips annehmen. Darüber hinaus können die Lösungen durch Randwertprobleme bestimmt werden, wobei die Bedingungen an den Grenzen des betrachteten Gebiets entscheidend für die Bestimmung der spezifischen Lösung sind.

Black-Scholes-Optionspreismodell-Derivation

Die Black-Scholes-Formel ist ein fundamentales Modell zur Bewertung von Optionen, das auf bestimmten Annahmen über die Preisbewegungen von Aktien basiert. Die Ableitung beginnt mit der Annahme, dass die Preise von Aktien einem geometrischen Brownians Prozess folgen, was bedeutet, dass die logarithmischen Renditen normalverteilt sind. Der Preis einer europäischen Call-Option kann dann durch die Risiko-Neutralität und die Martingal-Theorie abgeleitet werden.

Um die Option zu bewerten, wird zunächst ein Portfolio aus der Option und der zugrunde liegenden Aktie erstellt, das risikofrei ist. Mithilfe der Itô-Kalkül wird die zeitliche Veränderung des Portfoliowertes betrachtet, was zu einer partiellen differentialgleichung führt. Schließlich ergibt sich die Black-Scholes-Formel, die für eine europäische Call-Option wie folgt aussieht:

C(S,t)=SN(d1)−Ke−r(T−t)N(d2)C(S, t) = S N(d_1) - K e^{-r(T-t)} N(d_2)C(S,t)=SN(d1​)−Ke−r(T−t)N(d2​)

Hierbei sind N(d1)N(d_1)N(d1​) und N(d2)N(d_2)N(d2​) die Werte der kumulativen Normalverteilung, SSS der aktuelle Aktienkurs, KKK der Ausübungspreis, rrr der risikofreie Zinssatz und $ T-t