StudierendeLehrende

Sustainable Urban Development

Nachhaltige Stadtentwicklung bezeichnet einen integrierten Ansatz zur Planung und Entwicklung urbaner Räume, der ökologische, soziale und wirtschaftliche Aspekte berücksichtigt, um die Lebensqualität der gegenwärtigen und zukünftigen Generationen zu sichern. Ziel ist es, Städte zu schaffen, die umweltfreundlich, sozial gerecht und wirtschaftlich tragfähig sind. Wichtige Prinzipien sind unter anderem die Förderung von grünen Infrastrukturen, die Nutzung erneuerbarer Energiequellen, die Schaffung von öffentlichen Verkehrsnetzen und die Verbesserung der Luft- und Wasserqualität. Darüber hinaus spielt die Bürgerbeteiligung eine entscheidende Rolle, um sicherzustellen, dass die Bedürfnisse und Wünsche der Gemeinschaft in die Planungsprozesse einfließen. Nachhaltige Stadtentwicklung ist ein dynamischer Prozess, der kontinuierliche Anpassungen und Innovationen erfordert, um den Herausforderungen des Klimawandels und des demografischen Wandels zu begegnen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Hochentropielegierungen für die Luft- und Raumfahrt

High Entropy Alloys (HEAs) sind eine neuartige Klasse von Legierungen, die aus fünf oder mehr Hauptbestandteilen bestehen, wobei jeder Bestandteil in ähnlichen Konzentrationen vorliegt. Diese hochentropischen Legierungen bieten bemerkenswerte Eigenschaften wie hohe Festigkeit, Korrosionsbeständigkeit und hohe thermische Stabilität, was sie besonders für den Einsatz in der Luft- und Raumfahrtindustrie geeignet macht. Dank ihrer einzigartigen Mikrostruktur können HEAs extremen Bedingungen standhalten, die bei der Herstellung und dem Betrieb von Flugzeugen und Raumfahrzeugen auftreten. Ein weiterer Vorteil ist die Möglichkeit, durch gezielte Anpassungen der Zusammensetzung und der Verarbeitung die Eigenschaften der Legierungen zu optimieren. Somit ermöglichen HEAs nicht nur eine Gewichtsreduktion, sondern auch eine Verbesserung der Gesamtleistung von Luftfahrzeugen.

GARCH-Modell-Volatilitätsschätzung

Das GARCH-Modell (Generalized Autoregressive Conditional Heteroskedasticity) ist ein weit verbreitetes Verfahren zur Schätzung der Volatilität von Zeitreihen, insbesondere in der Finanzwirtschaft. Es ermöglicht die Modellierung von variabler Volatilität, die sich über die Zeit verändert, anstatt eine konstante Volatilität anzunehmen, wie es bei vielen klassischen Modellen der Fall ist. Die Grundidee des GARCH-Modells ist, dass die heutige Volatilität durch vergangene Fehler und vergangene Volatilität beeinflusst wird. Mathematisch wird dies oft als:

σt2=α0+∑i=1qαiεt−i2+∑j=1pβjσt−j2\sigma_t^2 = \alpha_0 + \sum_{i=1}^{q} \alpha_i \varepsilon_{t-i}^2 + \sum_{j=1}^{p} \beta_j \sigma_{t-j}^2σt2​=α0​+i=1∑q​αi​εt−i2​+j=1∑p​βj​σt−j2​

dargestellt, wobei σt2\sigma_t^2σt2​ die bedingte Varianz zum Zeitpunkt ttt ist, ε\varepsilonε die Fehlerterme und α\alphaα sowie β\betaβ die Modellparameter sind. Ein wesentliches Merkmal des GARCH-Modells ist, dass es Clusterung von Volatilität erfasst, was bedeutet, dass Perioden hoher Volatilität häufig auf Perioden hoher Volatilität folgen und umgekehrt. Dieses Modell ist besonders n

Skip-List-Einfügung

Eine Skip-Liste ist eine probabilistische Datenstruktur, die eine effiziente Suche, Einfügung und Löschung von Elementen ermöglicht. Bei der Einfügung eines neuen Wertes in eine Skip-Liste wird zunächst eine zufällige Anzahl von Ebenen bestimmt, die der neue Knoten einnehmen soll. Dieser Prozess erfolgt üblicherweise durch wiederholtes Werfen einer Münze, bis eine bestimmte Bedingung (z.B. "Kopf") nicht mehr erfüllt ist. Anschließend wird der neue Knoten in jeder der ausgewählten Ebenen an die entsprechenden Positionen eingefügt, indem die Zeiger der Nachbarknoten aktualisiert werden.

Der Einfügevorgang kann in folgenden Schritten zusammengefasst werden:

  1. Bestimmung der Höhe: Finden Sie die Höhe hhh des neuen Knotens.
  2. Positionierung: Traversieren Sie die Liste, um die korrekte Position für den neuen Knoten in jeder Ebene zu finden.
  3. Einfügen: Fügen Sie den neuen Knoten in jede Ebene ein, indem Sie die Zeiger aktualisieren.

Die durchschnittliche Zeitkomplexität für die Einfügung in eine Skip-Liste beträgt O(log⁡n)O(\log n)O(logn), was sie zu einer effizienten Alternative zu anderen Datenstrukturen wie balancierten Bäumen macht.

Mikrostrukturelle Evolution

Die mikrostrukturelle Evolution beschreibt die Veränderungen in der Mikrostruktur eines Materials über die Zeit, insbesondere während physikalischer oder chemischer Prozesse wie Kristallisation, Wärmebehandlung oder mechanischer Verformung. Diese Veränderungen können das Verhalten und die Eigenschaften eines Materials erheblich beeinflussen, darunter Festigkeit, Zähigkeit und Korrosionsbeständigkeit. Die Mikrostruktur umfasst Merkmale wie Korngröße, Phasenverteilung und Kristallorientierung, die durch verschiedene Faktoren wie Temperatur, Druck und chemische Zusammensetzung beeinflusst werden.

Ein Beispiel für mikrostrukturelle Evolution ist die Kornverfeinerung, die bei der Wärmebehandlung von Metallen auftritt: Bei höheren Temperaturen können sich die Körner vergrößern, was die Festigkeit des Materials verringern kann. Umgekehrt kann eine kontrollierte Abkühlung zu einer feinen Kornstruktur führen, die die mechanischen Eigenschaften verbessert. Solche Veränderungen werden oft mathematisch modelliert, um die Beziehung zwischen den Prozessparametern und der resultierenden Mikrostruktur zu quantifizieren.

DNA-Methylierung in der Epigenetik

Die DNA-Methylierung ist ein zentraler Mechanismus der Epigenetik, der die Genexpression ohne Änderungen der DNA-Sequenz beeinflusst. Bei der Methylierung wird eine Methylgruppe (-CH₃) an das Cytosin-Nukleotid in bestimmten DNA-Sequenzen angeheftet, häufig in der Nähe von Promotorregionen. Dieser Prozess kann die Aktivität von Genen regulieren, indem er das Anheften von Transkriptionsfaktoren und anderen Proteinen an die DNA blockiert oder erleichtert. Methylierungsmuster sind oft spezifisch für bestimmte Zelltypen und können durch Umwelteinflüsse, Ernährung oder Alterung verändert werden. Diese Veränderungen können tiefgreifende Auswirkungen auf Gesundheit und Krankheit haben, indem sie beispielsweise das Risiko für Krebserkrankungen oder neurodegenerative Erkrankungen beeinflussen. Schließlich ist die Erforschung der DNA-Methylierung ein vielversprechendes Feld in der Biomedizin, da sie potenzielle Ansätze für Therapien und diagnostische Werkzeuge bietet.

Festkörperbatterie-Design

Das Design von Festkörperbatterien (Solid-State-Batterien) unterscheidet sich grundlegend von traditionellen Lithium-Ionen-Batterien, da sie anstelle einer flüssigen Elektrolytlösung einen festen Elektrolyten verwenden. Diese Technologie bietet zahlreiche Vorteile, darunter eine höhere Energiedichte, verbesserte Sicherheit und eine längere Lebensdauer. Die Hauptkomponenten einer Festkörperbatterie sind der Anode, der Kathode und der feste Elektrolyt, der die Ionenleitfähigkeit ermöglicht.

Die Herausforderungen beim Design umfassen die Auswahl geeigneter Materialien, die Gewährleistung einer hohen Ionenleitfähigkeit und die Minimierung von Grenzflächenproblemen zwischen den verschiedenen Schichten. Zukünftige Entwicklungen könnten durch die Integration von Nanomaterialien oder durch innovative Herstellungsverfahren wie 3D-Druck vorangetrieben werden. Insgesamt bietet das Festkörperbatteriedesign vielversprechende Perspektiven für die nächste Generation von Energiespeichersystemen.