StudierendeLehrende

Nonlinear Observer Design

Der Nonlinear Observer Design befasst sich mit der Schätzung und Rekonstruktion von Zuständen eines nichtlinearen Systems, basierend auf seinen Eingaben und Ausgaben. Im Gegensatz zu linearen Beobachtern, die auf der Annahme linearer Dynamiken beruhen, müssen nichtlineare Beobachter die komplexen, oft unvorhersehbaren Verhaltensweisen nichtlinearer Systeme berücksichtigen. Der Designprozess umfasst typischerweise die Auswahl geeigneter nichtlinearer Funktionen, um die Dynamik des Systems zu beschreiben und sicherzustellen, dass die Schätzungen des Zustands asymptotisch konvergieren.

Wichtige Konzepte im Nonlinear Observer Design sind:

  • Stabilität: Untersuchung der Stabilität der Schätzungen und deren Konvergenzverhalten.
  • Lyapunov-Theorie: Anwendung von Lyapunov-Funktionen zur Analyse der Stabilität und Konvergenz.
  • Nichtlineare Rückführung: Verwendung von nichtlinearen Rückführungsstrategien, um die Schätzungen zu verbessern.

Insgesamt zielt der Nonlinear Observer Design darauf ab, zuverlässige, genaue und robuste Schätzungen von Systemzuständen zu liefern, die für die Regelung und Überwachung von nichtlinearen Systemen entscheidend sind.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Verstärkendes Q-Learning

Reinforcement Q-Learning ist ein verstärkendes Lernen-Verfahren, das darauf abzielt, eine optimale Strategie für einen Agenten in einer gegebenen Umgebung zu erlernen. Der Agent interagiert mit der Umgebung, indem er Aktionen auswählt und dafür Rückmeldungen in Form von Belohnungen erhält. Der Kern des Q-Learning-Algorithmus ist die Q-Funktion, die den Wert einer bestimmten Aktion in einem bestimmten Zustand beschreibt. Diese Q-Werte werden iterativ aktualisiert, basierend auf der Formel:

Q(s,a)←Q(s,a)+α(r+γmax⁡a′Q(s′,a′)−Q(s,a))Q(s, a) \leftarrow Q(s, a) + \alpha \left( r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right)Q(s,a)←Q(s,a)+α(r+γa′max​Q(s′,a′)−Q(s,a))

Hierbei steht sss für den aktuellen Zustand, aaa für die gewählte Aktion, rrr für die erhaltene Belohnung, s′s's′ für den nächsten Zustand, α\alphaα für die Lernrate und γ\gammaγ für den Diskontfaktor. Durch ständiges Lernen und Anpassen der Q-Werte kann der Agent schließlich eine Strategie entwickeln, die es ihm ermöglicht, in der Umgebung maximale Belohnungen zu erzielen.

Bagehot-Regel

Bagehot’s Rule ist ein Konzept aus der Finanzwirtschaft, das nach dem britischen Ökonomen Walter Bagehot benannt ist. Es besagt, dass in Zeiten finanzieller Krisen oder Liquiditätsengpässen Zentralbanken dazu neigen sollten, Banken zu unterstützen, indem sie ihnen Liquidität zur Verfügung stellen. Dabei sollten die Zentralbanken alle solventen Banken unterstützen, jedoch nur zu hohen Zinsen, um moralisches Risiko zu vermeiden und sicherzustellen, dass diese Banken sich aktiv um ihre Stabilität bemühen.

Die Grundannahme ist, dass die Bereitstellung von Liquidität zu höheren Zinsen dazu beiträgt, dass Banken ihre Kreditvergabe sorgfältiger steuern und die Risiken besser managen. Bagehot betonte, dass dies nicht nur den betroffenen Banken hilft, sondern auch das gesamte Finanzsystem stabilisiert, indem es Vertrauen in die Liquidität der Banken schafft. Ein weiterer zentraler Punkt ist, dass bei der Unterstützung der Banken die Zentralbank sicherstellen sollte, dass die bereitgestellten Mittel nur für kurzfristige Liquiditätsprobleme verwendet werden und nicht zur Rettung von langfristig insolventen Banken.

RSA-Verschlüsselung

RSA-Verschlüsselung ist ein weit verbreitetes asymmetrisches Kryptosystem, das auf der mathematischen Schwierigkeit der Faktorisierung großer Primzahlen basiert. Es verwendet ein Schlüsselpaar, bestehend aus einem öffentlichen und einem privaten Schlüssel. Der öffentliche Schlüssel wird verwendet, um Nachrichten zu verschlüsseln, während der private Schlüssel für die Entschlüsselung erforderlich ist. Die Sicherheit von RSA beruht auf der Annahme, dass es praktisch unmöglich ist, den privaten Schlüssel aus dem öffentlichen Schlüssel zu berechnen, selbst wenn die verschlüsselte Nachricht und der öffentliche Schlüssel bekannt sind. Mathematisch wird RSA durch die Wahl von zwei großen Primzahlen ppp und qqq definiert, aus denen der Modulus n=p⋅qn = p \cdot qn=p⋅q und die Eulersche Totient-Funktion ϕ(n)=(p−1)(q−1)\phi(n) = (p-1)(q-1)ϕ(n)=(p−1)(q−1) abgeleitet werden. Die Wahl eines öffentlichen Exponenten eee, der teilerfremd zu ϕ(n)\phi(n)ϕ(n) ist, ermöglicht die Erstellung des Schlüsselpaares.

Faltungssatz

Das Convolution Theorem ist ein fundamentales Konzept in der Fourier-Analyse und der Signalverarbeitung. Es besagt, dass die Fourier-Transformation der Faltung zweier Funktionen gleich dem Produkt der Fourier-Transformationen dieser Funktionen ist. Mathematisch ausgedrückt, für zwei Funktionen f(t)f(t)f(t) und g(t)g(t)g(t) gilt:

F{f∗g}=F{f}⋅F{g}\mathcal{F}\{f * g\} = \mathcal{F}\{f\} \cdot \mathcal{F}\{g\}F{f∗g}=F{f}⋅F{g}

Hierbei bezeichnet ∗*∗ die Faltung und F\mathcal{F}F die Fourier-Transformation. Dies bedeutet, dass die Analyse von gefalteten Signalen im Frequenzbereich oft einfacher ist, als im Zeitbereich. Das Theorem ist besonders nützlich in der Signalverarbeitung, da es die Berechnung von gefalteten Signalen vereinfacht und hilft, die Eigenschaften von Systemen zu verstehen, die durch Faltung beschrieben werden.

Kartesischer Baum

Ein Cartesian Tree ist eine spezielle Art von binärem Suchbaum, der aus einer Sequenz von Werten erzeugt wird, wobei die Werte die Schlüssel und deren zugehörige Indizes die Prioritäten darstellen. Die Grundidee ist, dass der Baum die Eigenschaften eines binären Suchbaums bezüglich der Schlüssel und die Eigenschaften eines Heap bezüglich der Prioritäten erfüllt. Das bedeutet, dass für jeden Knoten nnn die folgenden Bedingungen gelten:

  1. Der linke Teilbaum enthält nur Knoten mit Schlüsseln, die kleiner als der Schlüssel von nnn sind.
  2. Der rechte Teilbaum enthält nur Knoten mit Schlüsseln, die größer als der Schlüssel von nnn sind.
  3. Die Priorität eines Knotens ist immer kleiner als die Prioritäten seiner Kinder, was bedeutet, dass der Wurzelknoten die höchste Priorität hat.

Ein Cartesian Tree kann effizient konstruiert werden, indem man die gegebene Sequenz von Werten in der Reihenfolge ihrer Indizes betrachtet und dabei die Eigenschaften eines Heaps und eines binären Suchbaums kombiniert. Dies führt zu einer effizienten Datenstruktur, die zum Beispiel in der Informatik für Bereiche wie die Verarbeitung von Abfragen und Balanced Trees nützlich ist.

Biochemische Oszillatoren

Biochemische Oszillatoren sind Systeme in biologischen Prozessen, die periodische Schwankungen in Konzentrationen von Molekülen oder Reaktionen aufweisen. Diese Oszillationen können durch verschiedene Mechanismen entstehen, wie z.B. durch Rückkopplungsmechanismen in biochematischen Reaktionen. Ein bekanntes Beispiel ist der Circadian-Rhythmus, der die täglichen biologischen Prozesse von Organismen steuert.

Die mathematische Modellierung dieser Oszillatoren erfolgt häufig durch Differentialgleichungen, die die Dynamik der Reaktionen beschreiben. Ein häufig verwendetes Modell ist das Lotka-Volterra-Modell, das die Interaktion zwischen zwei Arten betrachtet, in dem eine die andere reguliert. Biochemische Oszillatoren sind entscheidend für viele Lebensprozesse, da sie die zeitliche Koordination von Stoffwechselreaktionen und anderen biologischen Funktionen ermöglichen.