StudierendeLehrende

Phase-Locked Loop

Ein Phase-Locked Loop (PLL) ist ein Regelkreis, der verwendet wird, um die Frequenz und Phase eines Ausgangssignals mit einem Referenzsignal zu synchronisieren. Der PLL besteht typischerweise aus drei Hauptkomponenten: einem Phasendetektor, einem Tiefpassfilter und einem spannungsgesteuerten Oszillator (VCO). Der Phasendetektor vergleicht die Phase des Ausgangssignals mit der des Referenzsignals und erzeugt eine Steuerspannung, die die Phase und Frequenz des VCO anpasst. Dadurch kann der PLL auf Änderungen im Referenzsignal reagieren und sicherstellen, dass das Ausgangssignal stets synchron bleibt.

Ein PLL findet Anwendung in verschiedenen Bereichen, darunter Kommunikationstechnik, Signalverarbeitung und Uhren-Synchronisation. Mathematisch kann die Regelung des PLL durch die Gleichung

fout=K⋅(fref+Δf)f_{out} = K \cdot (f_{ref} + \Delta f)fout​=K⋅(fref​+Δf)

beschrieben werden, wobei foutf_{out}fout​ die Ausgangsfrequenz, KKK die Verstärkung des Systems, freff_{ref}fref​ die Referenzfrequenz und Δf\Delta fΔf die Frequenzabweichung darstellt.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Sallen-Key-Filter

Der Sallen-Key Filter ist eine beliebte Topologie für aktive Filter, die häufig in der Signalverarbeitung eingesetzt wird. Er besteht aus einem Operationsverstärker und passiven Bauelementen wie Widerständen und Kondensatoren, um eine bestimmte Filtercharakteristik zu erzielen, typischerweise ein Tiefpass- oder Hochpassfilter. Die Konfiguration ermöglicht es, die Filterordnung zu erhöhen, ohne die Schaltungskomplexität signifikant zu steigern.

Ein typisches Merkmal des Sallen-Key Filters ist die Möglichkeit, die Eckfrequenz ωc\omega_cωc​ und die Dämpfung ζ\zetaζ durch die Auswahl der Bauteilwerte zu steuern. Die Übertragungsfunktion kann in der Form dargestellt werden:

H(s)=Ks2+ωcQs+ωc2H(s) = \frac{K}{s^2 + \frac{\omega_c}{Q}s + \omega_c^2}H(s)=s2+Qωc​​s+ωc2​K​

Hierbei ist KKK die Verstärkung, QQQ die Güte und sss die komplexe Frequenz. Diese Flexibilität macht den Sallen-Key Filter zu einer bevorzugten Wahl in vielen elektronischen Anwendungen, einschließlich Audio- und Kommunikationssystemen.

Lieferkette

Die Supply Chain oder Lieferkette bezeichnet das Netzwerk von Organisationen, Menschen, Aktivitäten, Informationen und Ressourcen, die an der Erstellung und Bereitstellung eines Produkts oder einer Dienstleistung beteiligt sind. Sie umfasst sämtliche Schritte vom Rohstoffabbau über die Produktion bis hin zur Auslieferung an den Endverbraucher. Eine effiziente Supply Chain ist entscheidend für die Kostensenkung und Wettbewerbsfähigkeit eines Unternehmens, da sie dazu beiträgt, die Produktionszeiten zu verkürzen und die Lagerbestände zu optimieren. Zu den Hauptkomponenten einer Supply Chain gehören:

  • Lieferanten: Stellen die benötigten Rohstoffe bereit.
  • Produzenten: Wandeln Rohstoffe in fertige Produkte um.
  • Distribution: Organisieren den Transport der Produkte zum Endkunden.

Die Überwachung und Optimierung der Supply Chain erfordert oft den Einsatz von Technologien wie Datenanalyse und Automatisierung, um die Effizienz und Transparenz zu erhöhen.

Arbitrage-Preistheorie

Die Arbitrage Pricing Theory (APT) ist ein Finanzmodell zur Bewertung von Vermögenswerten, das auf der Annahme basiert, dass der Preis eines Vermögenswerts durch verschiedene systematische Risikofaktoren bestimmt wird. Im Gegensatz zum Capital Asset Pricing Model (CAPM), das nur einen einzelnen Risikofaktor berücksichtigt (Marktrendite), identifiziert die APT mehrere Faktoren, die die Renditen beeinflussen können, wie zum Beispiel Inflation, Zinssätze oder wirtschaftliches Wachstum.

Die APT postuliert, dass, solange Arbitrage möglich ist, die erwartete Rendite eines Vermögenswerts durch die folgende Gleichung beschrieben werden kann:

E(Ri)=Rf+β1⋅(E(R1)−Rf)+β2⋅(E(R2)−Rf)+…+βn⋅(E(Rn)−Rf)E(R_i) = R_f + \beta_1 \cdot (E(R_1) - R_f) + \beta_2 \cdot (E(R_2) - R_f) + \ldots + \beta_n \cdot (E(R_n) - R_f)E(Ri​)=Rf​+β1​⋅(E(R1​)−Rf​)+β2​⋅(E(R2​)−Rf​)+…+βn​⋅(E(Rn​)−Rf​)

Hierbei ist E(Ri)E(R_i)E(Ri​) die erwartete Rendite des Vermögenswerts iii, RfR_fRf​ der risikofreie Zinssatz, und E(Rj)E(R_j)E(Rj​) die erwartete Rendite des j-ten Risikofaktors, gewichtet durch die Sensitivität βj\beta_jβj​ des Vermögenswerts gegenüber diesem Faktor. Die Theorie ist besonders nützlich

Tf-Idf-Vektorisierung

Tf-Idf, kurz für Term Frequency-Inverse Document Frequency, ist eine Methode zur Umwandlung von Text in numerische Vektoren, die in der Informationsretrieval und im maschinellen Lernen weit verbreitet ist. Der Term Frequency (TF) misst, wie oft ein bestimmtes Wort in einem Dokument vorkommt, relativ zur Gesamtanzahl der Wörter im Dokument. Der Inverse Document Frequency (IDF) hingegen quantifiziert, wie wichtig ein Wort ist, indem er die Anzahl der Dokumente, die das Wort enthalten, in Betracht zieht. Diese beiden Maße werden kombiniert, um den Tf-Idf-Wert für ein Wort ttt in einem Dokument ddd zu berechnen:

Tf-Idf(t,d)=TF(t,d)×IDF(t)\text{Tf-Idf}(t, d) = \text{TF}(t, d) \times \text{IDF}(t)Tf-Idf(t,d)=TF(t,d)×IDF(t)

Dabei ist die IDF definiert als:

IDF(t)=log⁡(NDF(t))\text{IDF}(t) = \log\left(\frac{N}{\text{DF}(t)}\right)IDF(t)=log(DF(t)N​)

wobei NNN die Gesamtanzahl der Dokumente und DF(t)\text{DF}(t)DF(t) die Anzahl der Dokumente, die das Wort ttt enthalten, ist. Durch die Anwendung dieser Methode können verschiedene Dokumente in einem Vektorraum dargestellt werden, was eine effektive Analyse und Klassifizierung von

Shannon-Entropie-Formel

Die Shannon-Entropie ist ein Maß für die Unsicherheit oder den Informationsgehalt einer Zufallsvariable. Sie wird häufig in der Informationstheorie verwendet, um die Menge an Information zu quantifizieren, die in einem bestimmten Datensatz enthalten ist. Die Formel für die Shannon-Entropie H(X)H(X)H(X) einer diskreten Zufallsvariablen XXX mit möglichen Werten x1,x2,…,xnx_1, x_2, \ldots, x_nx1​,x2​,…,xn​ und Wahrscheinlichkeiten p(x1),p(x2),…,p(xn)p(x_1), p(x_2), \ldots, p(x_n)p(x1​),p(x2​),…,p(xn​) lautet:

H(X)=−∑i=1np(xi)log⁡2p(xi)H(X) = -\sum_{i=1}^{n} p(x_i) \log_2 p(x_i)H(X)=−i=1∑n​p(xi​)log2​p(xi​)

Hierbei ist log⁡2\log_2log2​ der Logarithmus zur Basis 2, und die Entropie wird in Bit gemessen. Eine höhere Entropie bedeutet, dass die Zufallsvariable mehr Unsicherheit oder Vielfalt aufweist, während eine Entropie von null darauf hinweist, dass es keine Unsicherheit gibt, weil ein Ergebnis sicher ist. Die Shannon-Entropie ist ein fundamentales Konzept in der Datenkompression, Kryptographie und vielen anderen Bereichen der Informatik und Statistik.

Agentenbasierte Modellierung in der Wirtschaft

Agent-Based Modeling (ABM) ist eine leistungsstarke Methode in der Wirtschaftswissenschaft, die sich auf die Simulation von Individuen, sogenannten Agenten, konzentriert. Diese Agenten können heterogene Eigenschaften und Verhaltensweisen aufweisen und interagieren innerhalb eines definierten Umfelds. ABM ermöglicht es, komplexe wirtschaftliche Phänomene zu untersuchen, indem es die Mikroebene (Verhalten der Agenten) mit der Makroebene (gesamtwirtschaftliche Ergebnisse) verknüpft.

Ein typisches Beispiel für ABM in der Wirtschaft ist die Modellierung von Märkten, wo Käufer und Verkäufer unterschiedliche Strategien verfolgen können. Die Interaktionen zwischen diesen Agenten können zu emergenten Phänomenen führen, die nicht aus den einzelnen Verhalten der Agenten ableitbar sind. Durch diese detaillierte Simulation können Forscher Hypothesen testen, Vorhersagen treffen und besser verstehen, wie sich wirtschaftliche Systeme dynamisch entwickeln.