StudierendeLehrende

Planck’S Law

Das Plancksche Gesetz beschreibt die spektrale Verteilung der elektromagnetischen Strahlung, die von einem idealen schwarzen Körper bei einer bestimmten Temperatur emittiert wird. Es zeigt, dass die Intensität der Strahlung in Abhängigkeit von der Wellenlänge und der Temperatur variiert. Mathematisch wird es durch die Formel dargestellt:

I(λ,T)=2hc2λ5⋅1ehcλkT−1I(\lambda, T) = \frac{2hc^2}{\lambda^5} \cdot \frac{1}{e^{\frac{hc}{\lambda k T}} - 1}I(λ,T)=λ52hc2​⋅eλkThc​−11​

Hierbei ist I(λ,T)I(\lambda, T)I(λ,T) die Intensität der Strahlung, λ\lambdaλ die Wellenlänge, TTT die Temperatur in Kelvin, hhh das Plancksche Wirkungsquantum, ccc die Lichtgeschwindigkeit und kkk die Boltzmann-Konstante. Wesentlich ist, dass die Strahlung bei höheren Temperaturen eine größere Intensität und eine kürzere Wellenlänge aufweist, was die Grundlage für das Verständnis der thermischen Strahlung bildet. Das Plancksche Gesetz war entscheidend für die Entwicklung der Quantenmechanik, da es die Limitationen der klassischen Physik aufzeigte.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Superelastisches Verhalten

Superelasticität beschreibt das Phänomen, bei dem bestimmte Materialien, insbesondere bestimmte Legierungen wie Nickel-Titan (NiTi), in der Lage sind, sich bei Verformung elastisch zurückzuziehen, ohne bleibende Deformation zu erfahren. Dies geschieht, wenn die Materialien unter hohen Spannungen stehen, die über ihre elastische Grenze hinausgehen, jedoch innerhalb eines bestimmten Temperaturbereichs, der oft als martensitische Transformation bezeichnet wird. Bei dieser Transformation kann das Material in eine andere kristalline Struktur übergehen, die eine hohe Deformationsfähigkeit aufweist.

Der Prozess ist reversibel, was bedeutet, dass das Material nach der Entlastung wieder in seine ursprüngliche Form zurückkehrt. Mathematisch wird dies oft durch die Beziehung zwischen Spannung (σ\sigmaσ) und Dehnung (ϵ\epsilonϵ) beschrieben, wobei die Spannung nicht linear auf die Dehnung reagiert. Dies ermöglicht Anwendungen in der Medizintechnik, wie zum Beispiel in stents oder dentalklammern, wo eine hohe Flexibilität und Formgedächtnis-Fähigkeit erforderlich sind.

Legendre-Transformation

Die Legendre-Transformation ist ein wichtiges mathematisches Werkzeug, das in der Optimierung, Physik und in der Thermodynamik Anwendung findet. Sie ermöglicht es, eine Funktion f(x)f(x)f(x), die von einer Variablen xxx abhängt, in eine neue Funktion g(p)g(p)g(p) zu transformieren, die von der Steigung p=dfdxp = \frac{df}{dx}p=dxdf​ abhängt. Mathematisch wird die Legendre-Transformation definiert durch:

g(p)=sup⁡x(px−f(x))g(p) = \sup_{x}(px - f(x))g(p)=xsup​(px−f(x))

Hierbei ist der Supremum-Wert über xxx zu finden, was bedeutet, dass g(p)g(p)g(p) die maximalen Werte von px−f(x)px - f(x)px−f(x) für alle möglichen xxx darstellt. Diese Transformation ist besonders nützlich, um zwischen verschiedenen Darstellungen eines Problems zu wechseln, zum Beispiel von Positions- zu Impulsdarstellungen in der klassischen Mechanik. Ein typisches Beispiel ist der Übergang von der Energie- zu der Entropiefunktion in der Thermodynamik, wo die Legendre-Transformation hilft, die thermodynamischen Potenziale wie die Helmholtz- oder Gibbs-Energie zu definieren.

Arrow's Theorem

Arrow’s Theorem, formuliert von Kenneth Arrow in den 1950er Jahren, ist ein zentrales Ergebnis in der Sozialwahltheorie, das die Schwierigkeiten bei der Aggregation individueller Präferenzen zu einer kollektiven Entscheidung aufzeigt. Das Theorem besagt, dass es unter bestimmten Bedingungen unmöglich ist, ein Wahlverfahren zu finden, das die folgenden rationalen Kriterien erfüllt:

  1. Vollständigkeit: Für jede mögliche Auswahl von Alternativen sollte es möglich sein, eine Rangordnung zu erstellen.
  2. Transitivität: Wenn eine Gruppe von Wählern Alternative A über B und B über C bevorzugt, sollte A auch über C bevorzugt werden.
  3. Unabhängigkeit von irrelevanten Alternativen: Die Rangordnung zwischen zwei Alternativen sollte nicht von der Einschätzung einer dritten, irrelevanten Alternative abhängen.
  4. Bedingung der Einigkeit: Wenn alle Wähler eine bestimmte Alternative bevorzugen, sollte diese Alternative auch in der kollektiven Entscheidung bevorzugt werden.

Arrow zeigte, dass kein Wahlsystem existiert, das diese Bedingungen gleichzeitig erfüllt, falls es mindestens drei Alternativen gibt. Dies hat weitreichende Implikationen für die Demokratie und die Gestaltung von Abstimmungssystemen, da es die Schwierigkeiten bei der Schaffung eines fairen und konsistenten Entscheidungsprozesses verdeutlicht.

Majorana-Fermionen

Majorana-Fermionen sind spezielle Teilchen, die 1937 von dem Physiker Ettore Majorana vorgeschlagen wurden. Sie unterscheiden sich von anderen Fermionen dadurch, dass sie ihre eigenen Antiteilchen sind; das bedeutet, ein Majorana-Fermion ist identisch mit seinem Antiteilchen. Diese Eigenschaft führt zu interessanten Konsequenzen in der Quantenmechanik und der theoretischen Physik, insbesondere in der Supersymmetrie und in der Kondensierten Materie.

In der festen Materie können Majorana-Fermionen als quasiteilchen auftreten, die in bestimmten Materialien wie topologischen Isolatoren und Supraleitern existieren. Ihre Existenz könnte potenziell die Grundlage für robuste Quantencomputer bilden, da sie gegen lokale Störungen resistent sind. Die mathematische Beschreibung dieser Teilchen kann durch die Dirac-Gleichung modifiziert werden, die das Verhalten von Fermionen beschreibt, wobei Majorana-Fermionen eine spezielle Form dieser Gleichung annehmen.

Stochastischer Gradientenabstieg Beweise

Stochastic Gradient Descent (SGD) ist ein weit verbreiteter Optimierungsalgorithmus, der häufig in maschinellem Lernen und statistischer Modellierung verwendet wird. Der zentrale Mechanismus von SGD besteht darin, dass er die Gradienten der Kostenfunktion nicht über das gesamte Datenset, sondern über zufällig ausgewählte Teilmengen (Minibatches) berechnet. Diese Vorgehensweise führt zu einer schnelleren Konvergenz und ermöglicht es, große Datensätze effizient zu verarbeiten.

Die mathematische Grundlage für SGD beruht auf der Annahme, dass die Kostenfunktion J(θ)J(\theta)J(θ) bezüglich der Modellparameter θ\thetaθ minimiert werden soll. Der SGD-Update-Schritt wird durch die Formel

θt+1=θt−α∇J(θt;xi,yi)\theta_{t+1} = \theta_t - \alpha \nabla J(\theta_t; x_i, y_i)θt+1​=θt​−α∇J(θt​;xi​,yi​)

definiert, wobei α\alphaα die Lernrate ist und (xi,yi)(x_i, y_i)(xi​,yi​) ein zufälliges Datenpaar aus dem Datensatz darstellt. Die Beweise für die Konvergenz von SGD zeigen, dass unter bestimmten Bedingungen (wie einer geeigneten Wahl der Lernrate und einer hinreichend glatten Kostenfunktion) der Algorithmus tatsächlich in der Lage ist, das Minimum der Kostenfunktion zu erreichen, auch wenn dies in einem stochastischen Umfeld

Kosaraju's SCC-Erkennung

Kosaraju’s Algorithmus ist ein effizienter Ansatz zur Erkennung von stark zusammenhängenden Komponenten (SCCs) in gerichteten Graphen. Der Algorithmus besteht aus zwei Hauptschritten: Zuerst wird eine Tiefensuche (DFS) auf dem ursprünglichen Graphen durchgeführt, um die Knoten in der Reihenfolge ihrer Fertigstellung zu erfassen. Anschließend wird der Graph umgekehrt, indem die Richtungen aller Kanten invertiert werden. In einem zweiten DFS, das in der Reihenfolge der abgeschlossenen Knoten aus dem ersten Schritt durchgeführt wird, werden dann die SCCs identifiziert.

Die Laufzeit des Algorithmus beträgt O(V+E)O(V + E)O(V+E), wobei VVV die Anzahl der Knoten und EEE die Anzahl der Kanten im Graphen sind. Diese Effizienz macht den Algorithmus besonders nützlich für große Netzwerke in der Informatik und Mathematik.