StudierendeLehrende

Pwm Modulation

Die Pulsweitenmodulation (PWM) ist eine Technik zur Steuerung der Leistung an elektrischen Geräten, indem das Verhältnis von Ein- und Ausschaltzeiten eines Signals variiert wird. Bei PWM wird ein digitales Signal mit einer konstanten Frequenz erzeugt, dessen Pulsbreite (die Zeit, in der das Signal auf "hoch" steht) moduliert wird, um die effektive Spannung zu steuern. Das bedeutet, dass je länger der Puls im Vergleich zur Gesamtperiode ist, desto mehr Energie wird zum Verbraucher geleitet.

Die PWM kann mathematisch durch die Duty-Cycle-Formel beschrieben werden:

Duty Cycle(%)=(TONTON+TOFF)×100\text{Duty Cycle} (\%) = \left( \frac{T_{ON}}{T_{ON} + T_{OFF}} \right) \times 100Duty Cycle(%)=(TON​+TOFF​TON​​)×100

wobei TONT_{ON}TON​ die Zeit ist, in der das Signal aktiv ist, und TOFFT_{OFF}TOFF​ die Zeit, in der das Signal inaktiv ist. Diese Methode findet breite Anwendung in der Steuerung von Motoren, der Dimmtechnik für LEDs und in der Regelung von Heizsystemen, da sie eine präzise Kontrolle der Leistung bei minimalem Energieverlust ermöglicht.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Giffen-Paradoxon

Das Giffen-Paradox beschreibt ein ökonomisches Phänomen, bei dem der Preis eines Gutes steigt, während die nachgefragte Menge ebenfalls zunimmt, was den klassischen Gesetzen von Angebot und Nachfrage widerspricht. Typischerweise handelt es sich um ein inferiores Gut, dessen Nachfrage steigt, wenn das Einkommen der Konsumenten sinkt. Ein klassisches Beispiel ist Brot: Wenn der Preis für Brot steigt, könnten arme Haushalte gezwungen sein, weniger von teureren Lebensmitteln zu kaufen und stattdessen mehr Brot zu konsumieren, um ihre Ernährung aufrechtzuerhalten. Dies führt dazu, dass die Nachfrage nach Brot trotz des Preisanstiegs steigt, was dem Konzept der substituierenden Güter widerspricht. Das Giffen-Paradox zeigt, wie komplex die Zusammenhänge zwischen Preis, Einkommen und Nachfragemustern in der Wirtschaft sein können.

Holt-Winters

Das Holt-Winters-Modell ist ein Verfahren zur exponentiellen Glättung, das insbesondere für Zeitreihen mit saisonalen Mustern verwendet wird. Es kombiniert drei Komponenten: Niveau, Trend und Saison. Die Methode verwendet dabei die folgenden Parameter:

  • α\alphaα: Glättungsfaktor für das Niveau
  • β\betaβ: Glättungsfaktor für den Trend
  • γ\gammaγ: Glättungsfaktor für die Saisonalität

Das Modell wird in zwei Hauptvarianten unterteilt: die additive und die multiplikative Version. Während die additive Version geeignet ist, wenn die saisonalen Schwankungen konstant sind, wird die multiplikative Version verwendet, wenn die saisonalen Effekte proportional zur Höhe des Niveaus sind. Die Berechnungen erfolgen iterativ, wobei jede neue Schätzung auf den vorherigen Werten basiert, was eine dynamische Anpassung an die Veränderungen in der Zeitreihe ermöglicht.

Markow-Eigenschaft

Die Markov-Eigenschaft ist ein fundamentales Konzept in der Wahrscheinlichkeitstheorie und bezieht sich auf Prozesse, bei denen die zukünftigen Zustände nur von dem aktuellen Zustand abhängen und nicht von den vorangegangenen Zuständen. Mathematisch formuliert bedeutet dies, dass für eine Folge von Zuständen X1,X2,…,XnX_1, X_2, \ldots, X_nX1​,X2​,…,Xn​ die Bedingung gilt:

P(Xn+1∣Xn,Xn−1,…,X1)=P(Xn+1∣Xn)P(X_{n+1} | X_n, X_{n-1}, \ldots, X_1) = P(X_{n+1} | X_n)P(Xn+1​∣Xn​,Xn−1​,…,X1​)=P(Xn+1​∣Xn​)

Dies bedeutet, dass die Wahrscheinlichkeit des nächsten Zustands Xn+1X_{n+1}Xn+1​ ausschließlich durch den aktuellen Zustand XnX_nXn​ bestimmt wird. Diese Eigenschaft ist charakteristisch für Markov-Ketten, die in vielen Bereichen wie der Statistik, Physik, Ökonomie und Informatik Anwendung finden. Ein typisches Beispiel ist das Wetter, bei dem die Vorhersage für den nächsten Tag nur auf den Bedingungen des aktuellen Tages basiert, unabhängig von den vorhergehenden Tagen.

Tobins Q Investitionsentscheidung

Tobin's Q ist ein wichtiges wirtschaftliches Konzept, das die Entscheidung über Investitionen in Bezug auf den Marktwert eines Unternehmens und die Kosten seiner Vermögenswerte analysiert. Es wird definiert als das Verhältnis des Marktwerts der Unternehmensvermögen zu den Wiederbeschaffungskosten dieser Vermögenswerte. Mathematisch ausgedrückt lautet die Formel:

Q=Marktwert der Vermo¨genswerteWiederbeschaffungskosten der Vermo¨genswerteQ = \frac{\text{Marktwert der Vermögenswerte}}{\text{Wiederbeschaffungskosten der Vermögenswerte}}Q=Wiederbeschaffungskosten der Vermo¨genswerteMarktwert der Vermo¨genswerte​

Ein Q-Wert von größer als 1 signalisiert, dass der Marktwert der Vermögenswerte höher ist als die Kosten ihrer Erneuerung, was Unternehmen dazu anregt, mehr zu investieren. Umgekehrt bedeutet ein Q-Wert von weniger als 1, dass die Investitionskosten die Marktwerte übersteigen, was die Unternehmen von weiteren Investitionen abhalten kann. Diese Theorie hilft, die Dynamik zwischen Marktbedingungen und Unternehmensentscheidungen zu verstehen und zeigt, wie Investitionen durch externe Marktbedingungen beeinflusst werden können.

Adams-Bashforth

Das Adams-Bashforth-Verfahren ist ein numerisches Verfahren zur Lösung gewöhnlicher Differentialgleichungen (ODEs). Es gehört zur Familie der mehrschrittigen Verfahren und wird verwendet, um die Lösung einer Differentialgleichung über diskrete Zeitpunkte zu approximieren. Der Hauptansatz besteht darin, die Ableitung an vorhergehenden Zeitpunkten zu verwenden, um die Lösung an einem aktuellen Zeitpunkt zu schätzen. Die allgemeine Form des Adams-Bashforth-Verfahrens lautet:

yn+1=yn+h∑j=0kbjf(tn−j,yn−j)y_{n+1} = y_n + h \sum_{j=0}^{k} b_j f(t_{n-j}, y_{n-j})yn+1​=yn​+hj=0∑k​bj​f(tn−j​,yn−j​)

Hierbei ist yny_{n}yn​ der aktuelle Wert, hhh die Schrittweite, f(t,y)f(t, y)f(t,y) die Funktion, die die Differentialgleichung beschreibt, und bjb_jbj​ sind die Koeffizienten, die von der spezifischen Adams-Bashforth-Ordnung abhängen. Diese Methode ist besonders effektiv, wenn die Funktion fff gut definiert und kontinuierlich ist, da sie auf den vorherigen Werten basiert und somit eine gewisse Persistenz in den Berechnungen aufweist.

Quantentiefenabsorption

Quantum Well Absorption bezieht sich auf die Absorption von Licht in Materialien, die aus quantum wells bestehen, also aus dünnen Schichten, in denen die Bewegung von Elektronen und Löchern in einer Dimension eingeschränkt ist. Diese Struktur führt zu quantisierten Energiezuständen, die die Wechselwirkungen zwischen Licht und Materie stark beeinflussen. Die Absorption erfolgt, wenn Photonen mit einer Energie, die den quantisierten Energieniveaus entspricht, von den Elektronen in den quantenmechanischen Zuständen absorbiert werden.

Ein typisches Beispiel für eine solche Struktur sind Halbleiter-Quantenschichten, in denen die Absorptionseffizienz durch die Größe der Quantengassen und die Materialeigenschaften beeinflusst wird. Die Absorptionsrate kann durch die Formel

α(λ)=Aλ2⋅δ\alpha(\lambda) = \frac{A}{\lambda^2} \cdot \deltaα(λ)=λ2A​⋅δ

beschrieben werden, wobei α\alphaα die Absorptionskoeffizienten, AAA ein Materialparameter, λ\lambdaλ die Wellenlänge des Lichts und δ\deltaδ die Dicke der Quantenschicht ist. Die Fähigkeit, spezifische Wellenlängen zu absorbieren, macht Quantum Well Absorption besonders nützlich in der Photonik und Optoelektronik, beispielsweise in Lasern und Detektoren.