Das Riemann Integral ist ein fundamentales Konzept in der Analysis, das verwendet wird, um die Fläche unter einer Kurve zu bestimmen. Es basiert auf der Idee, eine Funktion über ein Intervall zu approximieren, indem man das Intervall in kleine Teilintervalle zerlegt. Für jedes Teilintervall wird der Funktionswert an einem bestimmten Punkt (z. B. dem linken Ende, dem rechten Ende oder dem Mittelwert) genommen und mit der Breite des Teilintervalls multipliziert. Die Summe dieser Produkte über alle Teilintervalle ergibt die Riemann-Summe:
Wenn die Breite der Teilintervalle gegen 0 geht und die Anzahl der Teilintervalle gegen unendlich steigt, konvergiert die Riemann-Summe zu dem Riemann-Integral:
Das Riemann Integral ist besonders nützlich in der Physik und Technik, um physikalische Größen wie Flächen, Volumina und Arbeit zu berechnen. Es ist jedoch wichtig zu beachten, dass nicht alle Funktionen Riemann-integrierbar sind, insbesondere wenn sie zu viele Unstetigkeitsstellen aufweisen.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.