Das Runge'sche Approximations-Theorem ist ein fundamentales Resultat in der Approximationstheorie, das sich mit der Annäherung von Funktionen durch rationale Funktionen beschäftigt. Es besagt, dass jede stetige Funktion, die auf einem kompakten Intervall definiert ist, durch rationale Funktionen beliebig gut approximiert werden kann, wenn man genügend viele Pole außerhalb des Intervalls wählt.
Insbesondere gilt:
Das Theorem hat weitreichende Anwendungen in der numerischen Mathematik und der Signalverarbeitung, da es eine Methode zur Approximation komplexer Funktionen bietet.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.