StudierendeLehrende

Spin Glass

Ein Spin Glass ist ein System in der Festkörperphysik und Statistischen Physik, das durch einen unordentlichen magnetischen Zustand charakterisiert ist. Im Gegensatz zu normalen ferromagnetischen Materialien, in denen die Spins (magnetischen Momente) der Atome in einer einheitlichen Richtung ausgerichtet sind, zeigen Spins in einem Spin Glass komplexe und zufällige Wechselwirkungen. Diese Wechselwirkungen können sowohl ferromagnetisch (gleichgerichtet) als auch antiferromagnetisch (entgegengesetzt gerichtet) sein, was zu einer Frustration der Spins führt.

Die dynamischen Eigenschaften eines Spin Glass sind besonders interessant, da sie oft eine langsame Relaxation und eine Alterung aufweisen. Ein wichtiger Aspekt dieser Systeme ist die Heterogenität, die bedeutet, dass verschiedene Bereiche des Materials unterschiedlich reagieren können. Mathematisch kann der Zustand eines Spin Glass oft durch die Energie E=−∑i,jJijSiSjE = -\sum_{i,j} J_{ij} S_i S_jE=−∑i,j​Jij​Si​Sj​ beschrieben werden, wobei JijJ_{ij}Jij​ die Wechselwirkungsstärke zwischen den Spins SiS_iSi​ und SjS_jSj​ darstellt. Spin Glasses haben Anwendungen in der Informationsverarbeitung und der Komplexitätstheorie, da sie Modelle für das Verständnis von Zufallsprozessen und Optimierungsproblemen bieten.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Z-Algorithmus String Matching

Der Z-Algorithmus ist ein effizienter Algorithmus zur Suche nach Mustern in Zeichenfolgen, der eine Zeitkomplexität von O(n+m)O(n + m)O(n+m) aufweist, wobei nnn die Länge des Textes und mmm die Länge des Musters ist. Er arbeitet, indem er ein Z-Array konstruiert, das für jede Position in der Zeichenfolge die Länge des längsten Substrings speichert, der an dieser Position beginnt und identisch mit dem Präfix der gesamten Zeichenfolge ist. Der Algorithmus kombiniert sowohl den Text als auch das Muster in einer neuen Zeichenfolge, um die Z-Werte zu berechnen und so die Positionen der Übereinstimmungen zu identifizieren.

Die Schritte des Z-Algorithmus sind wie folgt:

  1. Kombination: Füge das Muster, ein spezielles Trennzeichen und den Text zusammen.
  2. Z-Werte berechnen: Erzeuge das Z-Array für die kombinierte Zeichenfolge.
  3. Muster finden: Analysiere das Z-Array, um die Positionen zu bestimmen, an denen das Muster im Text vorkommt.

Durch die Verwendung des Z-Algorithmus kann die Suche nach Mustern in großen Texten erheblich beschleunigt werden, was ihn zu einer wertvollen Technik in der Informatik und der Bioinformatik macht.

Fresnel-Reflexion

Die Fresnel-Reflexion beschreibt das Phänomen, bei dem Licht an der Grenzfläche zwischen zwei Medien mit unterschiedlichem Brechungsindex reflektiert wird. Der Betrag der reflektierten und durchgelassenen Lichtwelle hängt von dem Einfallswinkel und den optischen Eigenschaften der beiden Medien ab. Die Fresnel-Gleichungen geben präzise an, wie viel Licht reflektiert wird, und lassen sich in zwei Hauptfälle unterteilen: den senkrechten und den waagerechten Fall.

Für den senkrechten Fall lautet die Reflexionskoeffizienten-Formel:

R=(n1−n2n1+n2)2R = \left( \frac{n_1 - n_2}{n_1 + n_2} \right)^2R=(n1​+n2​n1​−n2​​)2

Für den waagerechten Fall gilt:

R=(n2−n1n2+n1)2R = \left( \frac{n_2 - n_1}{n_2 + n_1} \right)^2R=(n2​+n1​n2​−n1​​)2

Hierbei bezeichnet n1n_1n1​ den Brechungsindex des ersten Mediums und n2n_2n2​ den des zweiten Mediums. Dieses Konzept ist nicht nur in der Optik bedeutend, sondern findet auch Anwendung in der Telekommunikation, Fotografie und bei der Beschichtung von Linsen, um Reflexionen zu minimieren.

Wannier-Funktion

Die Wannier-Funktion ist ein Konzept aus der Festkörperphysik, das verwendet wird, um die Elektronenwellenfunktionen in einem Kristallgitter zu beschreiben. Sie stellt eine lokalisierte Darstellung der Elektronenzustände dar und ist besonders nützlich für die Analyse von Bandstrukturen und topologischen Eigenschaften von Materialien. Mathematisch wird eine Wannier-Funktion Wn(r)W_n(\mathbf{r})Wn​(r) aus den Bloch-Funktionen ψn,k(r)\psi_{n,\mathbf{k}}(\mathbf{r})ψn,k​(r) abgeleitet, indem eine Fourier-Transformation über den gesamten Brillouin-Zone-Bereich durchgeführt wird:

Wn(r)=1N∑keik⋅rψn,k(r),W_n(\mathbf{r}) = \frac{1}{\sqrt{N}} \sum_{\mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{r}} \psi_{n,\mathbf{k}}(\mathbf{r}),Wn​(r)=N​1​k∑​eik⋅rψn,k​(r),

wobei NNN die Anzahl der k-punkte ist. Die Wannier-Funktionen sind orthonormiert und können verwendet werden, um die elektronischen Eigenschaften von Materialien zu untersuchen, insbesondere in Bezug auf Korrelationsphänomene und wenig-kopplungs Modelle. Ihre Lokalisierung ermöglicht es, die Wechselwirkungen zwischen Elektronen in einem Kristall effektiv zu simulieren und zu verstehen.

Buck-Boost-Wandler-Effizienz

Die Effizienz eines Buck-Boost-Wandlers ist ein wichtiger Faktor, der seine Leistung und Wirtschaftlichkeit bestimmt. Sie beschreibt das Verhältnis von ausgegebener Leistung zur aufgenommenen Leistung und wird typischerweise in Prozent angegeben. Die Effizienz η\etaη kann mathematisch durch die Formel

η=PausPein×100\eta = \frac{P_{\text{aus}}}{P_{\text{ein}}} \times 100η=Pein​Paus​​×100

ausgedrückt werden, wobei PausP_{\text{aus}}Paus​ die Ausgangsleistung und PeinP_{\text{ein}}Pein​ die Eingangsleistung darstellt. Ein effizienter Buck-Boost-Wandler minimiert die Verluste, die durch verschiedene Faktoren wie Schaltverluste, Leitungswiderstände und parasitäre Elemente verursacht werden. Es ist wichtig, die Effizienz bei unterschiedlichen Betriebsbedingungen, wie Lastvariationen und Eingangsspannungen, zu berücksichtigen, um die optimale Leistung des Wandlers zu gewährleisten. Eine hohe Effizienz ist entscheidend für Anwendungen, in denen Energieverbrauch und Wärmeentwicklung kritisch sind, wie in tragbaren Geräten oder erneuerbaren Energiesystemen.

Prospect-Theorie

Die Prospect Theory ist ein Konzept aus der Verhaltensökonomie, das von Daniel Kahneman und Amos Tversky in den späten 1970er Jahren entwickelt wurde. Sie beschreibt, wie Menschen Entscheidungen unter Unsicherheit treffen, insbesondere wenn es um Gewinne und Verluste geht. Im Gegensatz zur traditionellen Erwartungsnutzentheorie postuliert die Prospect Theory, dass Menschen asymmetrisch auf Gewinne und Verluste reagieren: Sie empfinden Verluste als stärker und unangenehmer als Gewinne von gleicher Größe, was als Verlustaversion bekannt ist. Diese Theorie führt zu verschiedenen Verhaltensmustern, wie z.B. der Neigung, riskante Entscheidungen zu treffen, wenn es um potenzielle Verluste geht, während sie bei potenziellen Gewinnen oft konservativer agieren. Mathematisch wird die Prospect Theory durch eine Wertfunktion beschrieben, die steiler im Verlustbereich ist und eine konkave Form im Gewinnbereich hat, was die unterschiedliche Sensibilität für Gewinne und Verluste verdeutlicht.

Navier-Stokes

Die Navier-Stokes-Gleichungen sind ein Satz von partiellen Differentialgleichungen, die die Bewegung von fluiden Materialien, wie Flüssigkeiten und Gasen, beschreiben. Sie basieren auf den Grundprinzipien der Erhaltung von Masse, Energie und Impuls. Die Gleichungen berücksichtigen sowohl die Viskosität des Fluids als auch externe Kräfte, wie Druck und Schwerkraft. Mathematisch ausgedrückt, können die Gleichungen in der Form:

ρ(∂u∂t+u⋅∇u)=−∇p+μ∇2u+f\rho \left( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}ρ(∂t∂u​+u⋅∇u)=−∇p+μ∇2u+f

geschrieben werden, wobei ρ\rhoρ die Dichte des Fluids, u\mathbf{u}u die Geschwindigkeit, ppp den Druck, μ\muμ die Viskosität und f\mathbf{f}f externe Kräfte darstellt. Diese Gleichungen sind von zentraler Bedeutung in der Strömungsmechanik und finden Anwendung in verschiedenen Bereichen wie Meteorologie, Ozeanographie und Ingenieurwesen. Die Lösung der Navier-Stokes-Gleichungen ist jedoch oft sehr komplex und in vielen Fällen noch nicht vollständig verstanden, was sie zu einem