StudierendeLehrende

Arrow’S Learning By Doing

Arrow's Learning By Doing ist ein Konzept, das von dem Ökonom Kenneth Arrow in den 1960er Jahren formuliert wurde. Es beschreibt, wie das Wissen und die Fähigkeiten von Individuen und Unternehmen durch praktische Erfahrung und wiederholte Tätigkeiten verbessert werden. Lernen durch Tun bedeutet, dass die Effizienz und Produktivität einer Person oder Organisation mit jeder Wiederholung einer Aufgabe steigt, was zu einer abnehmenden Grenzkostenstruktur führt.

In der Wirtschaftstheorie wird dies oft durch die Lernkurve dargestellt, die zeigt, dass die Produktionskosten mit dem kumulierten Produktionsvolumen sinken. Mathematisch kann dies durch die Funktion C(Q)=C0−k⋅ln⁡(Q)C(Q) = C_0 - k \cdot \ln(Q)C(Q)=C0​−k⋅ln(Q) beschrieben werden, wobei C(Q)C(Q)C(Q) die Kosten für die Produktion von QQQ Einheiten, C0C_0C0​ die Anfangskosten und kkk eine Konstante ist, die die Lernrate repräsentiert. Arrow's Konzept hat weitreichende Implikationen für die Innovationspolitik, da es die Bedeutung von Erfahrung und kontinuierlichem Lernen in der Produktion und im Management unterstreicht.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Wavelet-Transformation

Die Wavelet-Transformation ist ein mathematisches Verfahren, das zur Analyse von Signalen und Daten verwendet wird. Sie ermöglicht es, ein Signal in verschiedene Frequenzkomponenten zu zerlegen, während gleichzeitig die zeitliche Lokalisierung beibehalten wird. Im Gegensatz zur klassischen Fourier-Transformation, die nur die Frequenzinformationen liefert, ermöglicht die Wavelet-Transformation eine mehrdimensionale Analyse, indem sie sowohl die Frequenz als auch die Zeit berücksichtigt.

Die Wavelet-Transformation verwendet sogenannte Wavelets, die kleine Wellenformen sind, die sich über die Zeit und Frequenz verändern lassen. Diese Wavelets werden auf das Signal angewendet, um die Koeffizienten zu berechnen, die die Stärke der Frequenzen zu verschiedenen Zeiten repräsentieren. Mathematisch kann die kontinuierliche Wavelet-Transformation eines Signals f(t)f(t)f(t) durch die Formel

W(a,b)=1a∫−∞∞f(t)ψ(t−ba)dtW(a, b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f(t) \psi\left(\frac{t-b}{a}\right) dtW(a,b)=a​1​∫−∞∞​f(t)ψ(at−b​)dt

beschrieben werden, wobei ψ\psiψ das gewählte Wavelet, aaa die Skala und bbb die Zeitverschiebung ist. Diese Transformation findet Anwendung in vielen Bereichen, wie z.B. in der Bildverarbeitung, der Signalverarbeitung und der Datenkompression

Riemann-Abbildung

Die Riemann-Kartierungstheorie ist ein zentrales Ergebnis der komplexen Analysis, das besagt, dass jede einfach zusammenhängende, offene Teilmenge der komplexen Ebene, die nicht die gesamte Ebene ist, konform auf die Einheitsscheibe abgebildet werden kann. Eine konforme Abbildung ist eine Funktion, die Winkel zwischen Kurven erhält. Der Hauptsatz der Riemann-Kartierungstheorie besagt, dass für jede solche Menge DDD eine bijektive, analytische Abbildung f:D→Df: D \to \mathbb{D}f:D→D existiert, wobei D\mathbb{D}D die Einheitsdisk umfasst. Diese Abbildung ist eindeutig bis auf die Wahl eines Startpunktes in DDD und einer Drehung in der Disk. Der Prozess, eine solche Abbildung zu finden, nutzt die Theorie der Potentiale und die Lösungen von bestimmten Differentialgleichungen.

Stochastischer Abschlag

Der stochastische Diskontierungsfaktor ist ein Konzept in der Finanzwirtschaft, das verwendet wird, um den Zeitwert von Geld zu bewerten, insbesondere unter Unsicherheit. Er beschreibt, wie zukünftige Zahlungen oder Cashflows in der Gegenwart bewertet werden, wobei Unsicherheit über zukünftige Ereignisse berücksichtigt wird. Dies wird häufig durch einen diskontierenden Faktor DtD_tDt​ dargestellt, der die Wahrscheinlichkeit und den Wert zukünftiger Cashflows in einem stochastischen Rahmen berücksichtigt.

Mathematisch kann der stochastische Diskontierungsfaktor als Dt=e−rtTD_t = e^{-r_t T}Dt​=e−rt​T formuliert werden, wobei rtr_trt​ die zeitabhängige, stochastische Diskontierungsrate ist und TTT die Zeit bis zur Zahlung darstellt. Dieser Ansatz ist besonders wichtig in der Bewertung von Finanzinstrumenten, da er es ermöglicht, die Risiken und Unsicherheiten, die mit zukünftigen Zahlungen verbunden sind, angemessen zu berücksichtigen. In der Praxis wird der stochastische Diskontierungsfaktor häufig in Modellen wie dem Black-Scholes-Modell oder in der Preisbildung von Derivaten verwendet.

Wkb-Approximation

Die WKB-Approximation (Wentzel-Kramers-Brillouin) ist eine Methode zur Lösung von quantenmechanischen Differentialgleichungen, insbesondere der Schrödinger-Gleichung, in Situationen, in denen die Wellenlänge der Teilchen klein im Vergleich zu den charakteristischen Längenskalen der Potentiallandschaft ist. Diese Approximation geht davon aus, dass die Wellenfunktion als exponentielle Funktion dargestellt werden kann, wobei die Phase der Wellenfunktion stark variiert und die Amplitude langsam ändert. Mathematisch wird dies häufig durch die Annahme einer Lösung der Form

ψ(x)=A(x)eiS(x)/ℏ\psi(x) = A(x) e^{i S(x)/\hbar}ψ(x)=A(x)eiS(x)/ℏ

ausgedrückt, wobei A(x)A(x)A(x) die Amplitude und S(x)S(x)S(x) die Phase ist. Die WKB-Approximation ist besonders nützlich in der Quantenmechanik, um die Eigenschaften von Teilchen in klassischen Potentialen zu untersuchen, und sie ermöglicht die Berechnung von Tunnelprozessen sowie von Energieeigenzuständen in quantisierten Systemen. Sie ist jedoch nur in bestimmten Bereichen anwendbar, insbesondere wenn die Ableitungen von S(x)S(x)S(x) und A(x)A(x)A(x) klein sind, was die Gültigkeit der Approximation einschränkt.

Bose-Einstein-Kondensation

Die Bose-Einstein-Kondensation ist ein physikalisches Phänomen, das auftritt, wenn Bosonen, eine Art von Teilchen, bei extrem niedrigen Temperaturen in denselben quantenmechanischen Zustand übergehen. Dies führt dazu, dass eine große Anzahl von Teilchen in einem einzigen, niedrigsten Energiezustand „kondensiert“. Die Theorie wurde von den Physikern Satyendra Nath Bose und Albert Einstein in den 1920er Jahren formuliert und ist besonders relevant für die Beschreibung von kollapsierenden Bose-Gasen.

Ein charakteristisches Merkmal der Bose-Einstein-Kondensation ist, dass die Teilchen nicht mehr unabhängig agieren, sondern sich kollektiv verhalten. Dies ermöglicht neue physikalische Eigenschaften, wie z.B. supraleitende und superfluidische Zustände. Die mathematische Beschreibung dieser Phänomene erfolgt häufig über die Bose-Einstein-Statistik, die die Verteilung von Teilchen in verschiedenen Energiezuständen beschreibt.

Fourierreihen

Die Fourier-Reihe ist ein mathematisches Werkzeug, das verwendet wird, um periodische Funktionen als Summen von Sinus- und Kosinusfunktionen darzustellen. Diese Technik basiert auf der Idee, dass jede periodische Funktion durch die Überlagerung (Superposition) einfacher harmonischer Wellen beschrieben werden kann. Mathematisch wird eine Funktion f(x)f(x)f(x) über ein Intervall von −L-L−L bis LLL durch die Formel dargestellt:

f(x)=a0+∑n=1∞(ancos⁡(nπxL)+bnsin⁡(nπxL))f(x) = a_0 + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{n \pi x}{L}\right) + b_n \sin\left(\frac{n \pi x}{L}\right) \right)f(x)=a0​+n=1∑∞​(an​cos(Lnπx​)+bn​sin(Lnπx​))

Hierbei sind die Koeffizienten ana_nan​ und bnb_nbn​ die Fourier-Koeffizienten, die durch die Integrale

an=1L∫−LLf(x)cos⁡(nπxL)dxa_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n \pi x}{L}\right) dxan​=L1​∫−LL​f(x)cos(Lnπx​)dx

und

bn=1L∫−LLf(x)sin⁡(nπxL)dxb_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n \pi x}{L}\right) dxbn​=L1​∫−LL​f(x)sin(Lnπx​)dx

bestimmt werden. Fourier-Reihen finden Anwendung in