StudierendeLehrende

Bessel Function

Die Bessel-Funktion ist eine spezielle Funktion, die in vielen Bereichen der Mathematik und Physik vorkommt, insbesondere in der Lösung von Differentialgleichungen, die zylindrische Symmetrie aufweisen. Es gibt verschiedene Typen von Bessel-Funktionen, wobei die am häufigsten verwendeten die Bessel-Funktionen erster Art Jn(x)J_n(x)Jn​(x) und zweiter Art Yn(x)Y_n(x)Yn​(x) sind. Diese Funktionen erscheinen häufig in Problemen der Wellenmechanik, Wärmeleitung und Elektromagnetismus, wo sie die Form von Wellen in zylindrischen Koordinaten beschreiben.

Die Bessel-Funktion erster Art Jn(x)J_n(x)Jn​(x) ist definiert durch die folgende Reihenentwicklung:

Jn(x)=∑k=0∞(−1)kk!Γ(n+k+1)(x2)2k+nJ_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(n+k+1)} \left(\frac{x}{2}\right)^{2k+n}Jn​(x)=k=0∑∞​k!Γ(n+k+1)(−1)k​(2x​)2k+n

Hierbei ist Γ\GammaΓ die Gamma-Funktion. Bessel-Funktionen sind nützlich, da sie die Eigenschaften von Oszillationen und Wellen in nicht-euklidischen Geometrien modellieren können, was sie zu einem wichtigen Werkzeug in der theoretischen Physik und Ingenieurwissenschaft macht.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Ricardianische Äquivalenzkritik

Die Ricardian Equivalence ist eine ökonomische Theorie, die besagt, dass die Art und Weise, wie Regierungen ihre Ausgaben finanzieren, keinen Einfluss auf die Gesamtnachfrage in der Wirtschaft hat, da die Haushalte zukünftige Steuererhöhungen antizipieren und ihre Ersparnisse entsprechend anpassen. Die Ricardian Equivalence Critique hingegen weist auf verschiedene Annahmen hin, die in dieser Theorie problematisch sind. Kritiker argumentieren, dass nicht alle Haushalte in der Lage sind, zukünftige Steuerbelastungen korrekt einzuschätzen oder zu planen, was zu unterschiedlichen Sparverhalten führen kann. Zudem kann der Zugang zu Kreditmärkten für bestimmte Gruppen eingeschränkt sein, sodass einige Haushalte nicht die Möglichkeit haben, ihre Ersparnisse zu erhöhen. Diese Faktoren untergraben die Annahme der perfekten Rationalität und Information, die die Ricardianische Äquivalenz voraussetzt, und zeigen, dass fiskalische Maßnahmen tatsächlich einen Einfluss auf die Gesamtnachfrage und das Wirtschaftswachstum haben können.

Minimax-Satz in der KI

Das Minimax-Theorem ist ein fundamentales Konzept in der Spieltheorie und wird häufig in der künstlichen Intelligenz (AI) angewandt, insbesondere in Zwei-Spieler-Nullsummenspielen. Es besagt, dass in einem solchen Spiel der optimale Zug für einen Spieler, der versucht, seinen Gewinn zu maximieren, gleichzeitig den Verlust des anderen Spielers minimiert. Dies wird durch die Strategie erreicht, den minimalen Wert des maximalen Schadens zu minimieren. Mathematisch ausgedrückt, wenn VVV den Wert eines Spiels darstellt, kann die Gleichung wie folgt formuliert werden:

V=max⁡a∈Amin⁡b∈Bf(a,b)V = \max_{a \in A} \min_{b \in B} f(a, b)V=a∈Amax​b∈Bmin​f(a,b)

Hierbei stehen AAA und BBB für die möglichen Züge der beiden Spieler, und f(a,b)f(a, b)f(a,b) ist die Auszahlung des Spiels in Abhängigkeit von den gewählten Zügen. Der Minimax-Algorithmus wird häufig in AI-Systemen verwendet, um optimale Entscheidungen zu treffen, indem er alle möglichen Züge evaluiert und den besten Zug basierend auf diesem Prinzip auswählt.

Nachhaltige Geschäftsstrategien

Nachhaltige Geschäftsstrategien sind Ansätze, die Unternehmen entwickeln, um wirtschaftlichen Erfolg mit ökologischen und sozialen Verantwortlichkeiten in Einklang zu bringen. Diese Strategien zielen darauf ab, Ressourcenschonung, Umweltfreundlichkeit und soziale Gerechtigkeit in die Kerngeschäftsprozesse zu integrieren. Beispielsweise können Unternehmen durch den Einsatz erneuerbarer Energien, die Reduzierung von Abfall und die Förderung fairer Arbeitspraktiken nicht nur ihre Umweltbilanz verbessern, sondern auch das Vertrauen der Kunden gewinnen und langfristige Wettbewerbsfähigkeit sichern. Zu den häufig verwendeten Methoden gehören:

  • Kreislaufwirtschaft: Produkte so gestalten, dass sie wiederverwendbar oder recycelbar sind.
  • Nachhaltige Beschaffung: Lieferanten auswählen, die umweltfreundliche Praktiken anwenden.
  • Soziale Verantwortung: Engagement in der Gemeinschaft und faire Arbeitsbedingungen fördern.

Durch die Implementierung nachhaltiger Strategien können Unternehmen nicht nur ihre Betriebskosten senken, sondern auch neue Marktchancen erschließen und sich als Vorreiter in ihrer Branche positionieren.

Endogene Geldtheorie Post-Keynesianismus

Die Endogenous Money Theory (EMT) im postkeynesianischen Ansatz besagt, dass das Geldangebot nicht exogen, sondern endogen bestimmt wird. Das bedeutet, dass Banken Geld schaffen, indem sie Kredite vergeben, was der Nachfrage nach Krediten entspricht. In diesem Modell wird das Geldangebot durch die wirtschaftlichen Aktivitäten und die Bedürfnisse der Unternehmen und Haushalte beeinflusst.

Im Gegensatz zur klassischen Sichtweise, die annimmt, dass die Zentralbank die Geldmenge unabhängig von der Nachfrage steuert, argumentiert die EMT, dass die Zentralbank eher als Regulator auftritt, der die Bedingungen für die Geldschöpfung durch die Banken festlegt. Dies führt zu einem dynamischen Prozess, in dem die Geldmenge sich an die ökonomischen Gegebenheiten anpasst, was wiederum die Gesamtwirtschaft beeinflusst. Ein zentrales Konzept ist, dass die Zinsen nicht einfach durch das Geldangebot bestimmt werden, sondern auch durch die Nachfrage nach Kreditmitteln und die Risikobewertung von Kreditnehmern.

Casimir-Druck

Der Casimir-Druck ist ein physikalisches Phänomen, das aus quantenmechanischen Effekten resultiert, wenn zwei unendlich große, parallele Platten im Vakuum sehr nah beieinander platziert werden. Diese Platten beeinflussen die Quantenfluktuationen des elektromagnetischen Feldes zwischen ihnen, was zu einer Reduktion der verfügbaren Energiestufen führt. Dadurch entsteht eine netto anziehende Kraft, die die Platten aufeinander zu drückt. Diese Kraft kann quantitativ beschrieben werden durch die Formel:

F=−π2ℏc240d4F = -\frac{\pi^2 \hbar c}{240 d^4}F=−240d4π2ℏc​

wobei FFF der Casimir-Druck ist, ℏ\hbarℏ das reduzierte Plancksche Wirkungsquantum, ccc die Lichtgeschwindigkeit und ddd der Abstand zwischen den Platten. Der Casimir-Druck ist nicht nur von theoretischem Interesse, sondern hat auch Anwendungen in der Nanotechnologie und der Materialwissenschaft, da er die Wechselwirkungen zwischen nanoskaligen Objekten erheblich beeinflussen kann.

Modellprädiktive Regelung Kostenfunktion

Die Cost Function (Kostenfunktion) in der modellprädiktiven Regelung (Model Predictive Control, MPC) ist ein zentrales Element, das die Qualität der Steuerung bewertet. Sie quantifiziert die Abweichungen zwischen den gewünschten und den tatsächlichen Systemzuständen über einen definierten Zeitrahmen. Die allgemeine Form der Kostenfunktion kann wie folgt dargestellt werden:

J=∑k=0N(xkTQxk+ukTRuk)J = \sum_{k=0}^{N} \left( x_k^T Q x_k + u_k^T R u_k \right)J=k=0∑N​(xkT​Qxk​+ukT​Ruk​)

Hierbei ist JJJ die Gesamtkosten, NNN der Planungs-Horizont, xkx_kxk​ der Zustand des Systems zum Zeitpunkt kkk, uku_kuk​ die Steuergröße und QQQ sowie RRR sind Gewichtungsmatrizen, die die relative Bedeutung der Zustände und Steuerungen festlegen. Ziel der MPC ist es, die Steuerung so zu optimieren, dass die Kostenfunktion minimiert wird, wodurch das System stabilisiert und die gewünschten Leistungsmerkmale erreicht werden. Durch die Anpassung der Parameter in der Kostenfunktion können verschiedene Betriebsziele, wie beispielsweise Energieeffizienz oder Reaktionsgeschwindigkeit, priorisiert werden.