StudierendeLehrende

Wkb Approximation

Die WKB-Approximation (Wentzel-Kramers-Brillouin) ist eine Methode zur Lösung von quantenmechanischen Differentialgleichungen, insbesondere der Schrödinger-Gleichung, in Situationen, in denen die Wellenlänge der Teilchen klein im Vergleich zu den charakteristischen Längenskalen der Potentiallandschaft ist. Diese Approximation geht davon aus, dass die Wellenfunktion als exponentielle Funktion dargestellt werden kann, wobei die Phase der Wellenfunktion stark variiert und die Amplitude langsam ändert. Mathematisch wird dies häufig durch die Annahme einer Lösung der Form

ψ(x)=A(x)eiS(x)/ℏ\psi(x) = A(x) e^{i S(x)/\hbar}ψ(x)=A(x)eiS(x)/ℏ

ausgedrückt, wobei A(x)A(x)A(x) die Amplitude und S(x)S(x)S(x) die Phase ist. Die WKB-Approximation ist besonders nützlich in der Quantenmechanik, um die Eigenschaften von Teilchen in klassischen Potentialen zu untersuchen, und sie ermöglicht die Berechnung von Tunnelprozessen sowie von Energieeigenzuständen in quantisierten Systemen. Sie ist jedoch nur in bestimmten Bereichen anwendbar, insbesondere wenn die Ableitungen von S(x)S(x)S(x) und A(x)A(x)A(x) klein sind, was die Gültigkeit der Approximation einschränkt.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Casimir-Druck

Der Casimir-Druck ist ein physikalisches Phänomen, das aus quantenmechanischen Effekten resultiert, wenn zwei unendlich große, parallele Platten im Vakuum sehr nah beieinander platziert werden. Diese Platten beeinflussen die Quantenfluktuationen des elektromagnetischen Feldes zwischen ihnen, was zu einer Reduktion der verfügbaren Energiestufen führt. Dadurch entsteht eine netto anziehende Kraft, die die Platten aufeinander zu drückt. Diese Kraft kann quantitativ beschrieben werden durch die Formel:

F=−π2ℏc240d4F = -\frac{\pi^2 \hbar c}{240 d^4}F=−240d4π2ℏc​

wobei FFF der Casimir-Druck ist, ℏ\hbarℏ das reduzierte Plancksche Wirkungsquantum, ccc die Lichtgeschwindigkeit und ddd der Abstand zwischen den Platten. Der Casimir-Druck ist nicht nur von theoretischem Interesse, sondern hat auch Anwendungen in der Nanotechnologie und der Materialwissenschaft, da er die Wechselwirkungen zwischen nanoskaligen Objekten erheblich beeinflussen kann.

Resistive Ram

Resistive Ram (ReRAM oder RRAM) ist eine nicht-flüchtige Speichertechnologie, die auf der Änderung des elektrischen Widerstands eines Materials basiert, um Daten zu speichern. Im Gegensatz zu herkömmlichen Speichertechnologien wie DRAM oder Flash, die auf Ladungsspeicherung beruhen, nutzt ReRAM die Fähigkeit bestimmter Materialien, ihre Leitfähigkeit durch Anwendung eines elektrischen Stroms zu verändern. Diese Veränderungen im Widerstand können in zwei Zustände unterteilt werden: einen hohen Widerstandszustand (HRS) und einen niedrigen Widerstandszustand (LRS).

Die Vorteile von ReRAM umfassen hohe Geschwindigkeit, geringen Energieverbrauch und hohe Dichte, was es zu einem vielversprechenden Kandidaten für zukünftige Speicherlösungen macht. Zusätzlich ermöglicht die Technologie eine potenzielle Integration in neuromorphe Systeme, die auf der Nachahmung von neuronalen Netzwerken basieren, was die Entwicklung von intelligenten Speichersystemen fördert.

Wurzelortskurve-Analyse

Die Root Locus Analyse ist eine grafische Methode zur Untersuchung der Stabilität und Dynamik von Regelungssystemen. Sie zeigt, wie sich die Pole eines geschlossenen Regelkreises ändern, wenn ein Parameter, oft die Verstärkung des Systems, variiert wird. Die Wurzeln des charakteristischen Polynoms, das die Systemdynamik beschreibt, werden auf dem komplexen Zahlenfeld dargestellt.

Die grundlegenden Schritte der Root Locus Analyse sind:

  1. Bestimmung der offenen Regelkreisübertragungsfunktion G(s)H(s)G(s)H(s)G(s)H(s).
  2. Identifizierung der Pole und Nullstellen dieser Funktion.
  3. Zeichnen des Wurzelorts, indem man die Bewegung der Pole im s-Bereich verfolgt, während die Verstärkung KKK von 0 bis unendlich variiert wird.

Diese Methode ist besonders nützlich, um herauszufinden, unter welchen Bedingungen das System stabil oder instabil wird, und um geeignete Parameter für Regelungsdesigns zu wählen.

Minimax-Suchalgorithmus

Der Minimax-Algorithmus ist ein Entscheidungsfindungsalgorithmus, der häufig in Zwei-Spieler-Nullsummenspielen wie Schach oder Tic-Tac-Toe eingesetzt wird. Er basiert auf der Idee, dass jeder Spieler versucht, seine Gewinnchancen zu maximieren, während er gleichzeitig die Gewinnchancen des Gegners minimiert. Der Algorithmus erstellt einen Baum von möglichen Spielzügen, wobei jeder Knoten des Baums einen Spielzustand darstellt.

Die Bewertung der Knoten erfolgt durch die Zuweisung von Werten, die den Ausgang des Spiels repräsentieren: positive Werte für Gewinnmöglichkeiten des ersten Spielers, negative Werte für den zweiten Spieler und null für ein Unentschieden. Der Algorithmus arbeitet rekursiv und wählt den besten Zug aus, indem er von den Blättern des Baums (den möglichen Endzuständen) nach oben geht und dabei die optimalen Entscheidungen für beide Spieler berücksichtigt.

Die mathematische Notation zur Beschreibung des Algorithmus könnte wie folgt aussehen:

\text{Minimax}(n) = \begin{cases} \text{Bewertung}(n) & \text{wenn } n \text{ ein Blatt ist} \\ \max(\text{Minimax}(k)) & \text{wenn } n \text{ ein Zug des ersten Spielers ist} \\ \min(\text{Minimax}(k)) &

GARCH-Modell

Das GARCH-Modell (Generalized Autoregressive Conditional Heteroskedasticity) ist ein statistisches Modell, das häufig zur Analyse und Vorhersage von Zeitreihen mit variabler Volatilität verwendet wird, insbesondere in der Finanzwirtschaft. Es wurde entwickelt, um die Heteroskedastizität zu berücksichtigen, d.h. die Tatsache, dass die Varianz der Fehlerterme in einem Zeitreihenmodell nicht konstant ist, sondern sich über die Zeit ändert.

Das GARCH-Modell beschreibt die bedingte Varianz einer Zeitreihe als Funktion ihrer vorherigen Werte. Die allgemeine Form des GARCH(1,1)-Modells wird durch die Gleichung

σt2=α0+α1ϵt−12+β1σt−12\sigma_t^2 = \alpha_0 + \alpha_1 \epsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2σt2​=α0​+α1​ϵt−12​+β1​σt−12​

definiert, wobei σt2\sigma_t^2σt2​ die bedingte Varianz zum Zeitpunkt ttt, ϵt−12\epsilon_{t-1}^2ϵt−12​ den vorherigen Fehlerterm und σt−12\sigma_{t-1}^2σt−12​ die vorherige bedingte Varianz darstellt. Die Parameter α0\alpha_0α0​, α1\alpha_1α1​ und β1\beta_1β1​ müssen positiv sein und erfüllen die Bedingung $ \alpha_1

Dynamische Hashing-Techniken

Dynamische Hashing-Techniken sind Methoden zur effizienten Verwaltung von Datenstrukturen, die es ermöglichen, die Größe des Hash-Tabellen-Speichers dynamisch anzupassen. Im Gegensatz zu statischen Hashing-Methoden, bei denen die Größe der Tabelle im Voraus festgelegt wird, können dynamische Hash-Tabellen bei Bedarf wachsen oder schrumpfen. Dies geschieht oft durch das Teilen (Splitting) oder Zusammenfassen (Merging) von Buckets, die zur Speicherung von Daten verwendet werden. Ein bekanntes Beispiel für dynamisches Hashing ist das Extendible Hashing, das einen Verzeichnisansatz verwendet, bei dem die Tiefe des Verzeichnisses sich mit der Anzahl der Elemente in der Hash-Tabelle ändern kann. Ein weiteres Beispiel ist das Linear Hashing, das eine sequenzielle Erweiterung der Tabelle ermöglicht. Diese Techniken bieten eine bessere Handhabung von Kollisionen und ermöglichen eine gleichmäßigere Verteilung der Daten, was die Leistung bei Suchoperationen verbessert.