Die Dirac-Delta-Funktion, oft einfach als Delta-Funktion bezeichnet, ist ein mathematisches Konzept, das in der Physik und Ingenieurwissenschaft häufig verwendet wird. Sie wird definiert als eine Funktion , die an einem Punkt unendlich hoch ist und außerhalb dieses Punktes den Wert 0 annimmt. Formal wird sie so beschrieben:
Ein zentrales Merkmal der Dirac-Delta-Funktion ist, dass das Integral über die gesamte Funktion gleich 1 ist:
Die Delta-Funktion wird häufig verwendet, um ideale Punktquellen oder -impulse zu modellieren, da sie es ermöglicht, physikalische Phänomene wie elektrische Ladungen oder mechanische Kräfte, die an einem bestimmten Punkt wirken, präzise zu beschreiben. In der Theorie der Fourier-Transformation spielt die Dirac-Delta-Funktion eine entscheidende Rolle, da sie als "Sonde" für die Frequenzanalyse fungiert.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.