StudierendeLehrende

Thin Film Interference Coatings

Thin Film Interference Coatings sind spezielle Beschichtungen, die auf der Interferenz von Licht basieren, das durch dünne Schichten von Materialien reflektiert und gebrochen wird. Diese Beschichtungen bestehen typischerweise aus mehreren Schichten mit unterschiedlichen Brechungsindizes, die so gestaltet sind, dass sie das Licht auf bestimmte Weise manipulieren. Wenn Licht auf die dünne Schicht trifft, wird ein Teil des Lichts an der oberen Oberfläche und ein Teil an der unteren Oberfläche reflektiert. Die beiden Lichtwellen können miteinander interferieren, was zu verstärkten oder ausgelöschten Lichtintensitäten führt, abhängig von der Wellenlänge des Lichts und der Dicke der Schichten.

Mathematisch wird die Bedingung für konstruktive Interferenz durch die Gleichung

2nd=mλ2 n d = m \lambda2nd=mλ

beschrieben, wobei nnn der Brechungsindex, ddd die Dicke der Schicht, mmm eine ganze Zahl (Ordnung der Interferenz) und λ\lambdaλ die Wellenlänge des Lichts ist. Diese Technologie findet Anwendung in verschiedenen Bereichen wie der Optik, um Antireflektionsbeschichtungen, Spiegel oder Filter zu erstellen. Die gezielte Kontrolle der Schichtdicken und -materialien ermöglicht es, spezifische optische Eigenschaften zu erzielen,

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Schwarzschild-Radius

Der Schwarzschild Radius ist ein entscheidendes Konzept in der allgemeinen Relativitätstheorie, das den Radius beschreibt, innerhalb dessen die Gravitationskraft eines Objekts so stark ist, dass nichts, nicht einmal Licht, ihm entkommen kann. Dieser Radius ist besonders wichtig für schwarze Löcher, die als extrem dichte Objekte beschrieben werden. Der Schwarzschild Radius rsr_srs​ kann mit der Formel

rs=2GMc2r_s = \frac{2GM}{c^2}rs​=c22GM​

berechnet werden, wobei GGG die Gravitationskonstante, MMM die Masse des Objekts und ccc die Lichtgeschwindigkeit ist. Wenn ein Objekt komprimiert wird und seinen Schwarzschild Radius erreicht, entsteht ein Ereignishorizont, der die Grenze markiert, ab der keine Informationen mehr nach außen gelangen können. Dies bedeutet, dass für einen Beobachter außerhalb dieses Radius alle Prozesse innerhalb des Ereignishorizonts „unsichtbar“ werden.

Retinale Prothese

Eine Retinalprothese ist ein medizinisches Gerät, das entwickelt wurde, um Menschen mit bestimmten Formen der Erblindung, insbesondere bei Erkrankungen wie der altersbedingten Makuladegeneration oder Retinitis pigmentosa, zu helfen. Diese Prothesen funktionieren, indem sie Lichtsignale in elektrische Impulse umwandeln, die dann an die verbliebenen Ganglienzellen der Netzhaut weitergeleitet werden. Die Technologie besteht typischerweise aus einer kleinen Kamera, die auf einer Brille montiert ist, und einem Implantat, das chirurgisch in das Auge eingesetzt wird.

Die Kamera erfasst visuelle Informationen und sendet diese drahtlos an das Implantat, das die Informationen verarbeitet und stimuliert die Nervenenden in der Netzhaut. Dies ermöglicht es den Patienten, grundlegende visuelle Wahrnehmungen wie Licht, Bewegung und Konturen zu erkennen. Obwohl die Bildqualität im Vergleich zur natürlichen Sicht eingeschränkt ist, stellt die Retinalprothese einen bedeutenden Fortschritt in der Rehabilitation von Sehbehinderten dar und eröffnet neue Möglichkeiten für deren Lebensqualität.

Grenznutzungsneigung zum Sparen

Die Marginal Propensity To Save (MPS) beschreibt den Anteil des zusätzlichen Einkommens, den Haushalte sparen, anstatt ihn auszugeben. Sie wird als das Verhältnis der Erhöhung des Sparens zur Erhöhung des Einkommens definiert. Mathematisch kann dies dargestellt werden als:

MPS=ΔSΔYMPS = \frac{\Delta S}{\Delta Y}MPS=ΔYΔS​

wobei ΔS\Delta SΔS die Veränderung des Sparens und ΔY\Delta YΔY die Veränderung des Einkommens ist. Eine hohe MPS bedeutet, dass Haushalte einen großen Teil ihres zusätzlichen Einkommens sparen, während eine niedrige MPS darauf hindeutet, dass sie mehr konsumieren. Die MPS ist ein wichtiger Indikator für wirtschaftliche Stabilität und kann Einfluss auf die gesamtwirtschaftliche Nachfrage haben, da höhere Sparquoten oft in Zeiten wirtschaftlicher Unsicherheit beobachtet werden.

Jordan-Kurve

Eine Jordan Curve ist eine geschlossene, einfache Kurve in der Ebene, die sich nicht selbst schneidet. Sie ist benannt nach dem Mathematiker Camille Jordan, der in seinem Werk von 1887 das berühmte Jordan-Kurvensatz formulierte. Dieser Satz besagt, dass eine solche Kurve die Ebene in genau zwei Regionen unterteilt: eine Innere und eine Äußere. Die Innere Region ist zusammenhängend und wird von der Kurve vollständig umschlossen. Eine wichtige Eigenschaft der Jordan Curve ist, dass jeder Punkt außerhalb der Kurve von Punkten innerhalb der Kurve durch eine Linie verbunden werden kann, die die Kurve nicht schneidet. Diese Konzepte sind grundlegend in der Topologie und finden Anwendung in verschiedenen Bereichen der Mathematik und Informatik.

Stone-Weierstrass-Satz

Das Stone-Weierstrass-Theorem ist ein fundamentales Resultat der Funktionalanalysis, das sich mit der Approximation von Funktionen befasst. Es besagt, dass jede kontinuierliche Funktion auf einem kompakten Intervall [a,b][a, b][a,b] beliebig genau durch Polynome approximiert werden kann, wenn die Menge der approximierenden Funktionen ein algebraisches und trennendes System ist. Genauer gesagt, wenn AAA eine nichtleere, abgeschlossene Menge von reellen Funktionen ist, die auf [a,b][a, b][a,b] definiert sind, und die Bedingungen erfüllt, dass AAA die konstante Funktion enthält und für jede x0x_0x0​ in [a,b][a, b][a,b] eine Funktion f∈Af \in Af∈A existiert, die f(x0)f(x_0)f(x0​) annimmt, dann kann jede kontinuierliche Funktion fff in C([a,b])C([a, b])C([a,b]) durch Funktionen aus AAA approximiert werden. Dies führt zu einem tiefen Verständnis darüber, wie komplexe Funktionen durch einfachere, handhabbare Funktionen dargestellt werden können, und hat weitreichende Anwendungen in der Approximationstheorie und numerischen Analysis.

Lucas-Kritik

Die Lucas Critique ist ein fundamentales Konzept in der ökonomischen Theorie, das von dem Ökonomen Robert Lucas in den 1970er Jahren formuliert wurde. Sie besagt, dass ökonometrische Modelle, die nicht die Erwartungen der Wirtschaftsakteure berücksichtigen, irreführende Ergebnisse liefern können, insbesondere wenn es um die Analyse der Auswirkungen von politischen Maßnahmen geht. Lucas argumentiert, dass die Reaktionen der Individuen auf wirtschaftspolitische Veränderungen nicht konstant sind, sondern sich in Abhängigkeit von den Erwartungen über zukünftige Ereignisse ändern. Dies bedeutet, dass eine Politik, die auf historischen Daten basiert, nicht zuverlässig sein kann, wenn sie in einer sich ändernden wirtschaftlichen Umgebung angewendet wird.

Ein zentrales Element der Kritik ist die Notwendigkeit, Rationaler Erwartungen zu berücksichtigen. Das bedeutet, dass Individuen ihre Entscheidungen auf der Grundlage aller verfügbaren Informationen treffen und zukünftige wirtschaftliche Bedingungen antizipieren. Daher sollte jede politische Analyse auch die potenziellen Anpassungen der Akteure an neue politische Rahmenbedingungen einbeziehen, um realistische und effektive wirtschaftliche Strategien zu entwickeln.