StudierendeLehrende

Fermi Golden Rule

Die Fermi Golden Rule ist ein zentraler Bestandteil der Quantenmechanik und beschreibt die Übergangswahrscheinlichkeit eines quantenmechanischen Systems von einem Zustand in einen anderen. Sie wird häufig verwendet, um die Häufigkeit von Übergängen zwischen verschiedenen Energieniveaus in einem System zu bestimmen, insbesondere in der Störungstheorie. Mathematisch ausgedrückt lautet die Regel:

Wfi=2πℏ∣⟨f∣H′∣i⟩∣2ρ(Ef)W_{fi} = \frac{2\pi}{\hbar} | \langle f | H' | i \rangle |^2 \rho(E_f)Wfi​=ℏ2π​∣⟨f∣H′∣i⟩∣2ρ(Ef​)

Hierbei steht WfiW_{fi}Wfi​ für die Übergangswahrscheinlichkeit von einem Anfangszustand ∣i⟩|i\rangle∣i⟩ zu einem Endzustand ∣f⟩|f\rangle∣f⟩, H′H'H′ ist das Störungs-Hamiltonian und ρ(Ef)\rho(E_f)ρ(Ef​) die Zustandsdichte am Endzustand. Die Fermi Golden Rule ist besonders nützlich in der Festkörperphysik, der Kernphysik und der Quantenoptik, da sie hilft, Prozesse wie die Absorption von Photonen oder die Streuung von Teilchen zu analysieren. Sie zeigt auf, dass die Übergangswahrscheinlichkeit proportional zur Dichte der Zustände und der Matrixelemente zwischen den Zuständen ist, was tiefere Einsichten in die Wechselwirkungen von Teilchen ermöglicht.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Wellengleichung Numerische Methoden

Die Wellen-Gleichung beschreibt die Ausbreitung von Wellen, wie zum Beispiel Schall- oder Lichtwellen, in verschiedenen Medien. Um diese Gleichung numerisch zu lösen, kommen verschiedene Methoden zum Einsatz, die es ermöglichen, die Lösungen approximativ zu berechnen. Zu den gängigsten Methoden gehören Finite-Differenzen, Finite-Elemente und Spektralmethoden.

Bei den Finite-Differenzen wird die kontinuierliche Wellen-Gleichung auf ein diskretes Gitter angewendet, wobei Ableitungen durch Differenzenquotienten ersetzt werden. Die Finite-Elemente-Methode hingegen zerlegt das Problem in kleinere, einfacher zu lösende Elemente und verwendet Variationsmethoden zur Berechnung der Wellenbewegung. Schließlich bieten Spektralmethoden eine hohe Genauigkeit, indem sie die Lösung als Kombination von Basisfunktionen darstellen und die Fourier-Transformation verwenden.

Die Wahl der Methode hängt von der spezifischen Anwendung und den gewünschten Genauigkeitsanforderungen ab. In vielen Fällen erfordern numerische Methoden auch die Berücksichtigung von Rand- und Anfangsbedingungen, um realistische Lösungen zu erzielen.

Hilbert-Basis

Eine Hilbert-Basis ist ein zentrales Konzept in der Algebra und der Geometrie, das sich auf die Eigenschaften von Idealringen bezieht. Insbesondere handelt es sich um eine Basis eines Moduls über einem Noetherianischen Ring. Eine Teilmenge BBB eines Moduls MMM wird als Hilbert-Basis bezeichnet, wenn jede endliche Menge von Elementen aus MMM als Linearkombination von Elementen aus BBB dargestellt werden kann. Ein klassisches Beispiel ist der Ring der Polynomringe, in dem jede ideale Menge von Polynomen eine endliche Basis hat. Diese Basis ist besonders nützlich, da sie die Struktur und die Eigenschaften von Idealen in einem gegebenen Ring vereinfacht und somit die Berechnung und Analyse mathematischer Probleme erleichtert.

Bessel-Funktion

Die Bessel-Funktion ist eine spezielle Funktion, die in vielen Bereichen der Mathematik und Physik vorkommt, insbesondere in der Lösung von Differentialgleichungen, die zylindrische Symmetrie aufweisen. Es gibt verschiedene Typen von Bessel-Funktionen, wobei die am häufigsten verwendeten die Bessel-Funktionen erster Art Jn(x)J_n(x)Jn​(x) und zweiter Art Yn(x)Y_n(x)Yn​(x) sind. Diese Funktionen erscheinen häufig in Problemen der Wellenmechanik, Wärmeleitung und Elektromagnetismus, wo sie die Form von Wellen in zylindrischen Koordinaten beschreiben.

Die Bessel-Funktion erster Art Jn(x)J_n(x)Jn​(x) ist definiert durch die folgende Reihenentwicklung:

Jn(x)=∑k=0∞(−1)kk!Γ(n+k+1)(x2)2k+nJ_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{k! \Gamma(n+k+1)} \left(\frac{x}{2}\right)^{2k+n}Jn​(x)=k=0∑∞​k!Γ(n+k+1)(−1)k​(2x​)2k+n

Hierbei ist Γ\GammaΓ die Gamma-Funktion. Bessel-Funktionen sind nützlich, da sie die Eigenschaften von Oszillationen und Wellen in nicht-euklidischen Geometrien modellieren können, was sie zu einem wichtigen Werkzeug in der theoretischen Physik und Ingenieurwissenschaft macht.

Plancksches Gesetz der Ableitung

Die Ableitung von Plancks Konstante hhh ist ein zentraler Bestandteil der Quantenmechanik, die die Wechselwirkungen zwischen Licht und Materie beschreibt. Max Planck stellte 1900 die Hypothese auf, dass elektromagnetische Strahlung in diskreten Energiemengen, genannt Quanten, emittiert oder absorbiert wird. Diese Energiemenge EEE ist proportional zur Frequenz ν\nuν der Strahlung, was mathematisch durch die Gleichung E=hνE = h \nuE=hν ausgedrückt wird, wobei hhh die Planck-Konstante ist. Um hhh zu bestimmen, analysierte Planck die spektrale Verteilung der Strahlung eines schwarzen Körpers und fand, dass die Werte von EEE und ν\nuν eine direkte Beziehung zeigen. Durch die Anpassung der Theorie an experimentelle Daten konnte Planck den Wert von hhh auf etwa 6.626×10−34 Js6.626 \times 10^{-34} \, \text{Js}6.626×10−34Js bestimmen, was die Grundlage für die Entwicklung der Quantenmechanik bildete.

Effiziente Märkte Hypothese

Die Efficient Markets Hypothesis (EMH) ist eine Theorie in der Finanzwirtschaft, die besagt, dass die Preise von Wertpapieren an den Finanzmärkten alle verfügbaren Informationen vollständig widerspiegeln. Dies bedeutet, dass es unmöglich ist, durch den Zugriff auf öffentliche Informationen oder durch Analyse von historischen Daten überdurchschnittliche Renditen zu erzielen. Die EMH wird in drei Formen unterteilt:

  1. Schwache Form: Alle historischen Preisinformationen sind bereits in den aktuellen Preisen enthalten.
  2. Halb starke Form: Alle öffentlich verfügbaren Informationen, einschließlich Finanzberichte und Nachrichten, sind in den Preisen reflektiert.
  3. Starke Form: Alle Informationen, sowohl öffentliche als auch private, sind in den Preisen enthalten.

Die Hypothese impliziert, dass Marktteilnehmer rational handeln und dass es keinen systematischen Vorteil gibt, der aus der Analyse von Informationen oder Markttrends gewonnen werden kann. In einem effizienten Markt würde der Preis eines Wertpapiers schnell auf neue Informationen reagieren, was es schwierig macht, Gewinne durch aktives Management zu erzielen.

Boyer-Moore

Der Boyer-Moore-Algorithmus ist ein effizienter Suchalgorithmus zum Finden eines Musters in einem Text. Er wurde von Robert S. Boyer und J Strother Moore in den 1970er Jahren entwickelt und ist bekannt für seine hohe Leistung, insbesondere bei großen Texten und Mustern. Der Algorithmus nutzt zwei innovative Techniken: die Bad Character Heuristic und die Good Suffix Heuristic.

  1. Bad Character Heuristic: Wenn ein Zeichen im Text nicht mit dem entsprechenden Zeichen im Muster übereinstimmt, wird das Muster so weit verschoben, dass das letzte Vorkommen des nicht übereinstimmenden Zeichens im Muster mit dem Text übereinstimmt.

  2. Good Suffix Heuristic: Wenn ein Teil des Musters mit dem Text übereinstimmt, aber die Übereinstimmung an einem bestimmten Punkt bricht, wird das Muster so verschoben, dass das letzte Vorkommen des übereinstimmenden Teils im Muster an die richtige Stelle im Text passt.

Durch die Kombination dieser Techniken kann der Boyer-Moore-Algorithmus oft mehr als ein Zeichen im Text überspringen, was ihn im Vergleich zu einfacheren Suchalgorithmen wie dem naiven Ansatz sehr effizient macht.