StudierendeLehrende

Surface Plasmon Resonance Tuning

Surface Plasmon Resonance (SPR) Tuning ist ein Verfahren, das es ermöglicht, die optischen Eigenschaften von Oberflächenplasmonen zu steuern, die an der Grenzfläche zwischen einem Metall und einem Dielektrikum entstehen. Diese Resonanzphänomene sind empfindlich gegenüber Änderungen in der Umgebung, wie z.B. der Brechungsindexänderung, was sie ideal für Biosensoren und analytische Anwendungen macht. Durch gezielte Modifikationen der Metalloberfläche, wie z.B. durch die Variation der Dicke des Metalls, die Verwendung unterschiedlicher Materialkombinationen oder die Anpassung der Wellenlängen des einfallenden Lichts, kann die Resonanzbedingung optimiert werden.

Die mathematische Beziehung, die diesem Phänomen zugrunde liegt, kann durch die Gleichung

λ=2πck\lambda = \frac{2\pi c}{k}λ=k2πc​

ausgedrückt werden, wobei λ\lambdaλ die Wellenlänge, ccc die Lichtgeschwindigkeit und kkk die Wellenzahl ist. Darüber hinaus spielen auch Parameter wie Temperatur und chemische Umgebung eine Rolle, weshalb das Verständnis von SPR-Tuning für die Entwicklung hochsensitiver Sensoren von entscheidender Bedeutung ist.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Ladungstransport in Halbleitern

Der Ladungstransport in Halbleitern ist ein entscheidender Prozess, der das Verhalten und die Leistung elektronischer Bauelemente wie Dioden und Transistoren bestimmt. In Halbleitern gibt es zwei Haupttypen von Ladungsträgern: Elektronen und Löcher. Elektronen sind negative Ladungsträger, während Löcher als positive Ladungsträger betrachtet werden, die entstehen, wenn Elektronen aus dem Valenzband in das Leitungsband angeregt werden.

Der Transport dieser Ladungsträger erfolgt durch zwei Hauptmechanismen: Drift und Diffusion. Drift beschreibt die Bewegung der Ladungsträger unter dem Einfluss eines elektrischen Feldes, während Diffusion die Bewegung aufgrund von Konzentrationsgradienten beschreibt. Mathematisch wird der elektrische Strom in einem Halbleiter oft durch die Gleichung

J=q(nμn+pμp)EJ = q(n\mu_n + p\mu_p)EJ=q(nμn​+pμp​)E

beschrieben, wobei JJJ der Stromdichte, qqq die Elementarladung, nnn die Elektronenkonzentration, ppp die Löcherkonzentration, μn\mu_nμn​ und μp\mu_pμp​ die Mobilitäten der Elektronen und Löcher und EEE die elektrische Feldstärke ist. Das Verständnis des Ladungstr

Strömungsdynamik-Simulation

Die Fluid Dynamics Simulation ist ein Verfahren zur numerischen Berechnung und Analyse der Bewegung von Flüssigkeiten und Gasen. Diese Simulationen verwenden mathematische Modelle, die auf den Grundlagen der Strömungsmechanik basieren, um komplexe Strömungsmuster zu simulieren. Dabei kommen häufig die Navier-Stokes-Gleichungen zum Einsatz, die die Bewegung von viskosen Fluiden beschreiben. Die Ergebnisse dieser Simulationen sind entscheidend für verschiedene Anwendungen, von der Luft- und Raumfahrt über die Automobilindustrie bis hin zu medizinischen Geräten. Zu den typischen Herausforderungen gehören die Modellierung von Turbulenzen und die Handhabung von Grenzflächen, die spezielle numerische Methoden und hohe Rechenleistung erfordern. Dank moderner Softwarelösungen und Hochleistungsrechnern können jetzt präzise Vorhersagen über das Verhalten von Fluiden unter verschiedenen Bedingungen getroffen werden.

Cartans Satz über Lie-Gruppen

Das Cartan-Theorem über Lie-Gruppen beschäftigt sich mit der Struktur von Lie-Gruppen und ihren Lie-Algebren. Es besagt, dass jede kompakte, zusammenhängende Lie-Gruppe durch ihre Lie-Algebra eindeutig bestimmt ist. Das bedeutet, dass man aus der Lie-Algebra, die die infinitesimalen Transformationen der Gruppe beschreibt, die gesamte Gruppe rekonstruieren kann.

Ein zentrales Ergebnis von Cartan ist, dass die Darstellung einer Lie-Gruppe als eine Matrixgruppe in einer gewissen Weise einfach ist, da alle kompakten Lie-Gruppen isomorph zu einer Untergruppe der allgemeinen linearen Gruppe sind. Dies führt zur wichtigen Erkenntnis, dass die Struktur der Lie-Gruppe durch die Eigenschaften ihrer Lie-Algebra und deren Darstellung vollständig charakterisiert wird.

Zusammengefasst zeigt das Cartan-Theorem, dass die Untersuchung der Lie-Algebra einer Lie-Gruppe erhebliche Einsichten in die gesamte Struktur und die Eigenschaften der Gruppe selbst bietet.

Fisher-Gleichung

Die Fisher-Gleichung beschreibt die Beziehung zwischen nominalen und realen Zinssätzen unter Berücksichtigung der Inflation. Sie lautet:

(1+i)=(1+r)(1+π)(1 + i) = (1 + r)(1 + \pi)(1+i)=(1+r)(1+π)

Dabei ist iii der nominale Zinssatz, rrr der reale Zinssatz und π\piπ die Inflationsrate. Die Gleichung zeigt, dass der nominale Zinssatz die Summe des realen Zinssatzes und der Inflationsrate reflektiert. In der Praxis verwenden Ökonomen oft eine annähernde Formulierung:

i≈r+πi \approx r + \pii≈r+π

Dies bedeutet, dass der nominale Zinssatz etwa gleich der Summe aus realem Zinssatz und Inflationsrate ist, was für viele wirtschaftliche Analysen nützlich ist. Die Fisher-Gleichung ist besonders wichtig für Investoren und Sparer, da sie hilft zu verstehen, wie sich Inflation auf die Kaufkraft von Zinsen auswirkt.

Fraktaldimension

Die Fraktaldimension ist ein Konzept aus der Mathematik, das die Komplexität und den Raumfüllungsgrad von Fraktalen beschreibt. Im Gegensatz zur klassischen Dimension, die nur ganze Zahlen annimmt (0 für Punkte, 1 für Linien, 2 für Flächen usw.), kann die Fraktaldimension nicht-ganzzahlige Werte annehmen, was bedeutet, dass Fraktale eine zwischen den Dimensionen liegende Struktur besitzen. Ein Beispiel ist die Koch-Kurve, deren Dimension etwa 1,261 beträgt, was darauf hinweist, dass sie komplexer ist als eine einfache Linie, aber weniger komplex als eine Fläche.

Die Fraktaldimension wird häufig mit der Box-Counting-Methode berechnet, bei der die Anzahl der Boxen, die benötigt werden, um ein Fraktal abzudecken, in Abhängigkeit von der Größe der Boxen gezählt wird. Diese Dimension ist besonders nützlich in verschiedenen Disziplinen, einschließlich der Physik, Biologie und Finanzwissenschaften, um Phänomene zu beschreiben, die nicht-linear und selbstähnlich sind.

Hicksian-Dekomposition

Die Hicksian Decomposition ist ein Konzept aus der Mikroökonomie, das verwendet wird, um die Veränderungen in der Nachfrage nach Gütern aufgrund von Preisänderungen zu analysieren. Sie zerlegt die Gesamteffektivität einer Preisänderung in zwei Komponenten: den Substitutionseffekt und den Einkommenseffekt. Der Substitutionseffekt beschreibt, wie sich die Nachfrage nach einem Gut verändert, wenn sich dessen Preis im Vergleich zu anderen Gütern ändert, während der Einkommenseffekt die Veränderung der Nachfrage aufgrund der Änderung des realen Einkommens betrachtet, die durch die Preisänderung entsteht.

Mathematisch wird dies oft mit der Nachfragefunktion dargestellt, wobei die Hicksianische Nachfrage hhh als Funktion von Preisen und einem konstanten Nutzenniveau UUU betrachtet wird:

h(p,U)h(p, U)h(p,U)

In dieser Analyse wird häufig die Indifferenzkurve verwendet, um die verschiedenen Kombinationen von Gütern darzustellen, die denselben Nutzen bieten, wodurch der Einfluss der Preisänderungen auf die Konsumentscheidungen klarer wird.