Die Fokker-Planck-Gleichung ist eine fundamentale Gleichung in der statistischen Physik und beschreibt die zeitliche Entwicklung der Wahrscheinlichkeitsdichte einer zufälligen Variablen. Sie wird häufig in Bereichen wie der chemischen Kinetik, der Finanzmathematik und der Biophysik angewendet. Die allgemeine Form der Fokker-Planck-Gleichung ist:
Hierbei ist die Wahrscheinlichkeitsdichte, die Driftterm und die Diffusionsterm. Lösungen der Fokker-Planck-Gleichung sind oft nicht trivial und hängen stark von den spezifischen Formen der Funktionen und ab. Eine häufige Methode zur Lösung ist die Verwendung von Fourier-Transformationen oder Laplace-Transformationen, die es ermöglichen, die Gleichung in den Frequenz- oder Zeitbereich zu transformieren, um analytische oder numerische Lösungen zu finden.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.