StudierendeLehrende

Lindahl Equilibrium

Das Lindahl Equilibrium ist ein Konzept aus der Wohlfahrtsökonomie, das beschreibt, wie öffentliche Güter effizient bereitgestellt werden können. In einem Lindahl-Gleichgewicht zahlen Individuen unterschiedliche Preise für den Zugang zu einem öffentlichen Gut, basierend auf ihrer persönlichen Zahlungsbereitschaft. Dies führt dazu, dass die Summe der individuellen Zahlungsbereitschaften genau den Gesamtkosten der Bereitstellung des Gutes entspricht. Mathematisch lässt sich dies als Gleichung darstellen:

∑i=1npi=C\sum_{i=1}^{n} p_i = Ci=1∑n​pi​=C

wobei pip_ipi​ der Preis ist, den Individuum iii für das öffentliche Gut zahlt, und CCC die Gesamtkosten der Bereitstellung ist. Ein wichtiges Merkmal des Lindahl-Gleichgewichts ist, dass es sowohl Effizienz als auch Gerechtigkeit fördert, da die Zahlungsbereitschaften der Individuen die Nutzenmaximierung widerspiegeln. Wenn das Gleichgewicht erreicht ist, profitieren alle Teilnehmer, da sie nur für den Nutzen zahlen, den sie tatsächlich aus dem öffentlichen Gut ziehen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Runge'scher Approximationssatz

Das Runge'sche Approximations-Theorem ist ein fundamentales Resultat in der Approximationstheorie, das sich mit der Annäherung von Funktionen durch rationale Funktionen beschäftigt. Es besagt, dass jede stetige Funktion, die auf einem kompakten Intervall definiert ist, durch rationale Funktionen beliebig gut approximiert werden kann, wenn man genügend viele Pole außerhalb des Intervalls wählt.

Insbesondere gilt:

  1. Wenn fff eine Funktion ist, die auf einem kompakten Intervall [a,b][a, b][a,b] stetig ist, dann kann für jede positive Zahl ϵ\epsilonϵ eine rationale Funktion RRR gefunden werden, so dass der Unterschied ∣f(x)−R(x)∣<ϵ|f(x) - R(x)| < \epsilon∣f(x)−R(x)∣<ϵ für alle xxx in [a,b][a, b][a,b] ist.
  2. Die Pole der rationalen Funktionen sollten außerhalb des Intervalls liegen, was bedeutet, dass sie nicht in der Nähe der Punkte aaa und bbb liegen dürfen.

Das Theorem hat weitreichende Anwendungen in der numerischen Mathematik und der Signalverarbeitung, da es eine Methode zur Approximation komplexer Funktionen bietet.

Hotellings Regel

Hotelling's Regel ist ein Konzept aus der Wirtschaftswissenschaft, das sich mit der optimalen Ernte von nicht erneuerbaren Ressourcen befasst. Es besagt, dass die Ausbeutung einer nicht erneuerbaren Ressource über die Zeit so erfolgen sollte, dass der Wert der abgebauten Menge im Zeitverlauf gleich dem Wert der nicht abgebauten Menge plus dem Zinssatz ist. Dies bedeutet, dass die Grenzpreise der Ressource mit der Zeit steigen sollten, um die Opportunitätskosten zu reflektieren. Mathematisch wird dies oft durch die Gleichung dargestellt:

dP(t)dt=r⋅P(t)\frac{dP(t)}{dt} = r \cdot P(t)dtdP(t)​=r⋅P(t)

wobei P(t)P(t)P(t) der Preis der Ressource zu einem bestimmten Zeitpunkt und rrr der Zinssatz ist. Diese Regel hilft dabei, die nachhaltige Nutzung von Ressourcen zu planen und sicherzustellen, dass zukünftige Generationen ebenfalls von diesen Ressourcen profitieren können.

Dirichlet-Reihe

Eine Dirichlet-Reihe ist eine spezielle Art von unendlicher Reihe, die häufig in der Zahlentheorie vorkommt. Sie hat die Form

D(s)=∑n=1∞annsD(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}D(s)=n=1∑∞​nsan​​

wobei sss eine komplexe Zahl ist und ana_nan​ eine Folge von Koeffizienten darstellt, die oft mit den Eigenschaften von Zahlen verknüpft sind, wie z.B. den Werten von Multiplikative Funktionen. Dirichlet-Reihen sind besonders wichtig in der Untersuchung der Verteilung von Primzahlen und in der analytischen Zahlentheorie. Ein bekanntes Beispiel ist die Riemannsche Zeta-Funktion, die durch die Dirichlet-Reihe

ζ(s)=∑n=1∞1ns\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}ζ(s)=n=1∑∞​ns1​

definiert ist und eine zentrale Rolle in der Theorie der Primzahlen spielt. Die Konvergenz einer Dirichlet-Reihe hängt stark von der Wahl der Koeffizienten und der Position von sss im komplexen Zahlenraum ab.

Dirichlet-Funktion

Die Dirichlet-Funktion ist eine klassische Funktion in der Mathematik, die oft in der Analysis betrachtet wird. Sie ist definiert als:

D(x)={1wenn x rational ist0wenn x irrational istD(x) = \begin{cases} 1 & \text{wenn } x \text{ rational ist} \\ 0 & \text{wenn } x \text{ irrational ist} \end{cases}D(x)={10​wenn x rational istwenn x irrational ist​

Diese Funktion ist interessant und wichtig, weil sie zeigt, wie unterschiedlich die Eigenschaften rationaler und irrationaler Zahlen sind. Ein wesentliches Merkmal der Dirichlet-Funktion ist, dass sie überall in ihrem Definitionsbereich R\mathbb{R}R nicht stetig ist; das bedeutet, dass es an keiner Stelle einen stetigen Grenzwert gibt. Die Funktion ist nur an den rationalen Zahlen gleich 1 und an den irrationalen Zahlen gleich 0, wodurch sie eine stark oszillierende Natur besitzt. Darüber hinaus wird die Dirichlet-Funktion häufig als Beispiel in der Lehre verwendet, um Konzepte wie Stetigkeit, Lebesgue-Integration und die Dichte rationaler und irrationaler Zahlen zu veranschaulichen.

Dc-Dc Buck-Boost-Wandlung

Die Dc-Dc Buck-Boost Conversion ist ein Verfahren zur Spannungswandlung, das es ermöglicht, eine Eingangsspannung sowohl zu erhöhen (Boost) als auch zu verringern (Buck). Dieses Verfahren wird häufig in Anwendungen eingesetzt, bei denen die Ausgangsspannung sowohl unter als auch über der Eingangsspannung liegen kann. Der Buck-Boost-Wandler verwendet typischerweise einen Induktor, Schalter (z. B. Transistor), Diode und Kondensatoren, um die gewünschte Spannungsstufe zu erreichen.

Die Funktionsweise lässt sich durch folgende Gleichungen zusammenfassen:

  • Für den Buck-Modus:
Vout<VinundVout=D⋅VinV_{out} < V_{in} \quad \text{und} \quad V_{out} = D \cdot V_{in}Vout​<Vin​undVout​=D⋅Vin​
  • Für den Boost-Modus:
Vout>VinundVout=Vin1−DV_{out} > V_{in} \quad \text{und} \quad V_{out} = \frac{V_{in}}{1-D}Vout​>Vin​undVout​=1−DVin​​

Hierbei ist DDD das Tastverhältnis, das den Anteil der Zeit beschreibt, in dem der Schalter geschlossen ist. Durch die Anpassung dieses Verhältnisses kann die Ausgangsspannung präzise reguliert werden, was die Buck-Boost-Konverter flexibel und vielseitig macht, insbesondere in tragbaren Geräten und erneuerbaren Energieanwendungen.

Cauchy-Schwarz

Die Cauchy-Schwarz-Ungleichung ist ein fundamentales Resultat in der linearen Algebra und Analysis, das über die Beziehung zwischen zwei Vektoren oder Funktionen Aussage trifft. Sie besagt, dass für zwei endliche Vektoren u\mathbf{u}u und v\mathbf{v}v die folgende Ungleichung gilt:

∣⟨u,v⟩∣≤∥u∥∥v∥|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\|∣⟨u,v⟩∣≤∥u∥∥v∥

Hierbei ist ⟨u,v⟩\langle \mathbf{u}, \mathbf{v} \rangle⟨u,v⟩ das Skalarprodukt der Vektoren und ∥u∥\|\mathbf{u}\|∥u∥ sowie ∥v∥\|\mathbf{v}\|∥v∥ die Normen der Vektoren. Diese Ungleichung hat weitreichende Anwendungen, nicht nur in der Mathematik, sondern auch in den Naturwissenschaften und der Wirtschaft. Besonders wichtig ist sie in der Statistik, um Korrelationen zwischen Variablen zu untersuchen. Zudem wird sie häufig zur Begründung anderer mathematischer Theoreme verwendet, wie beispielsweise dem Satz von Bessel.