StudierendeLehrende

Garch Model Volatility Estimation

Das GARCH-Modell (Generalized Autoregressive Conditional Heteroskedasticity) ist ein weit verbreitetes Verfahren zur Schätzung der Volatilität von Zeitreihen, insbesondere in der Finanzwirtschaft. Es ermöglicht die Modellierung von variabler Volatilität, die sich über die Zeit verändert, anstatt eine konstante Volatilität anzunehmen, wie es bei vielen klassischen Modellen der Fall ist. Die Grundidee des GARCH-Modells ist, dass die heutige Volatilität durch vergangene Fehler und vergangene Volatilität beeinflusst wird. Mathematisch wird dies oft als:

σt2=α0+∑i=1qαiεt−i2+∑j=1pβjσt−j2\sigma_t^2 = \alpha_0 + \sum_{i=1}^{q} \alpha_i \varepsilon_{t-i}^2 + \sum_{j=1}^{p} \beta_j \sigma_{t-j}^2σt2​=α0​+i=1∑q​αi​εt−i2​+j=1∑p​βj​σt−j2​

dargestellt, wobei σt2\sigma_t^2σt2​ die bedingte Varianz zum Zeitpunkt ttt ist, ε\varepsilonε die Fehlerterme und α\alphaα sowie β\betaβ die Modellparameter sind. Ein wesentliches Merkmal des GARCH-Modells ist, dass es Clusterung von Volatilität erfasst, was bedeutet, dass Perioden hoher Volatilität häufig auf Perioden hoher Volatilität folgen und umgekehrt. Dieses Modell ist besonders n

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Adaboost

Adaboost, kurz für "Adaptive Boosting", ist ein populärer Ensemble-Lernalgorithmus, der darauf abzielt, die Genauigkeit von Klassifikatoren zu verbessern. Der Ansatz basiert auf der Idee, mehrere schwache Klassifikatoren, die nur geringfügig besser als Zufall sind, zu einem starken Klassifikator zu kombinieren. Dies geschieht durch die iterative Schulung von Klassifikatoren, wobei jeder nachfolgende Klassifikator sich auf die Fehler der vorhergehenden konzentriert.

Die Gewichtung der Trainingsbeispiele wird dabei angepasst: Beispiele, die falsch klassifiziert wurden, erhalten höhere Gewichte, sodass der nächste Klassifikator diese Beispiele besser erkennen kann. Mathematisch kann die Gewichtung durch die Formel

wi(t)=wi(t−1)⋅exp⁡(−αtyiht(xi))w_{i}^{(t)} = w_{i}^{(t-1)} \cdot \exp(-\alpha_t y_i h_t(x_i))wi(t)​=wi(t−1)​⋅exp(−αt​yi​ht​(xi​))

ausgedrückt werden, wobei wi(t)w_{i}^{(t)}wi(t)​ das Gewicht des iii-ten Beispiels nach der ttt-ten Iteration, αt\alpha_tαt​ die Gewichtung des ttt-ten Klassifikators, yiy_iyi​ das wahre Label und ht(xi)h_t(x_i)ht​(xi​) die Vorhersage des Klassifikators ist. Am Ende werden die Vorhersagen der einzelnen Klassifikatoren gewichtet und aggregiert, um die finale Entscheidung zu

Tandem-Wiederholungsexpansion

Tandem Repeat Expansion bezieht sich auf das Phänomen, bei dem sich kurze, wiederholte DNA-Sequenzen in einem Genom vergrößern. Diese Wiederholungen, auch als Tandem-Wiederholungen bekannt, können aus zwei oder mehr identischen Einheiten bestehen, die direkt hintereinander angeordnet sind. Bei der Expansion werden zusätzliche Wiederholungseinheiten in diese Region eingefügt, was zu einer zunehmenden Anzahl von Wiederholungen führt. Dies kann zu genetischen Störungen führen, da die veränderte Sequenz die normale Funktion des Gens beeinträchtigen kann. Beispiele für Erkrankungen, die mit Tandem Repeat Expansion assoziiert sind, sind Huntington-Krankheit und Spinozerebelläre Ataxie, wo die Anzahl der Wiederholungen einen direkten Einfluss auf den Schweregrad der Symptome hat.

Magnetokalorische Kühlung

Die magnetokalorische Kühlung ist ein innovatives Kühlsystem, das auf dem magnetokalorischen Effekt basiert, bei dem bestimmte Materialien ihre Temperatur ändern, wenn sie einem äußeren Magnetfeld ausgesetzt werden. Wenn ein magnetokalorisches Material in ein starkes Magnetfeld gebracht wird, erhöht sich seine Temperatur, und wenn das Magnetfeld entfernt wird, sinkt die Temperatur. Dieser Prozess ermöglicht eine effektive Wärmeübertragung und kann zum Kühlen von Räumen oder Lebensmitteln eingesetzt werden.

Die Funktionsweise lässt sich in mehrere Schritte unterteilen:

  1. Magnetisierung des Materials, was zu einer Temperaturerhöhung führt.
  2. Wärmeübertragung an ein Kühlmedium, um die erzeugte Wärme abzuführen.
  3. Entmagnetisierung, bei der das Material abkühlt und erneut bereit ist, den Zyklus zu wiederholen.

Im Vergleich zu herkömmlichen Kühlsystemen ist die magnetokalorische Kühlung umweltfreundlicher, da sie keine schädlichen Kältemittel benötigt und potenziell effizienter ist.

Riemann-Integral

Das Riemann Integral ist ein fundamentales Konzept in der Analysis, das verwendet wird, um die Fläche unter einer Kurve zu bestimmen. Es basiert auf der Idee, eine Funktion fff über ein Intervall [a,b][a, b][a,b] zu approximieren, indem man das Intervall in kleine Teilintervalle zerlegt. Für jedes Teilintervall wird der Funktionswert an einem bestimmten Punkt (z. B. dem linken Ende, dem rechten Ende oder dem Mittelwert) genommen und mit der Breite des Teilintervalls multipliziert. Die Summe dieser Produkte über alle Teilintervalle ergibt die Riemann-Summe:

Rn=∑i=1nf(xi∗)ΔxiR_n = \sum_{i=1}^{n} f(x_i^*) \Delta x_iRn​=i=1∑n​f(xi∗​)Δxi​

Wenn die Breite der Teilintervalle gegen 0 geht und die Anzahl der Teilintervalle gegen unendlich steigt, konvergiert die Riemann-Summe zu dem Riemann-Integral:

∫abf(x) dx\int_a^b f(x) \, dx∫ab​f(x)dx

Das Riemann Integral ist besonders nützlich in der Physik und Technik, um physikalische Größen wie Flächen, Volumina und Arbeit zu berechnen. Es ist jedoch wichtig zu beachten, dass nicht alle Funktionen Riemann-integrierbar sind, insbesondere wenn sie zu viele Unstetigkeitsstellen aufweisen.

Bode-Diagramm

Ein Bode-Plot ist eine grafische Darstellung der Frequenzantwort eines linearen, zeitinvarianten Systems, häufig in der Regelungstechnik und Signalverarbeitung verwendet. Er besteht aus zwei Diagrammen: Das erste zeigt den Magnitude (Amplitude) in Dezibel (dB) und das zweite die Phase in Grad als Funktion der Frequenz auf einer logarithmischen Skala. Die Magnituden werden üblicherweise mit der Formel 20log⁡10∣H(jω)∣20 \log_{10} \left| H(j\omega) \right|20log10​∣H(jω)∣ dargestellt, wobei H(jω)H(j\omega)H(jω) die Übertragungsfunktion des Systems ist und ω\omegaω die Frequenz. Der Bode-Plot ermöglicht es Ingenieuren, die Stabilität und das dynamische Verhalten eines Systems leicht zu analysieren, indem er die Resonanzfrequenzen und Phasenverschiebungen sichtbar macht. Durch die logarithmische Darstellung können große Wertebereiche übersichtlich abgebildet werden, was die Interpretation und den Vergleich verschiedener Systeme erleichtert.

Laborelastizität

Labor Elasticity bezeichnet die Sensitivität der Arbeitsnachfrage gegenüber Veränderungen in anderen wirtschaftlichen Variablen, insbesondere dem Lohnniveau. Sie wird häufig als Maß dafür verwendet, wie stark die Arbeitgeber bereit sind, die Anzahl der Beschäftigten zu erhöhen oder zu verringern, wenn sich die Löhne ändern. Die Formel zur Berechnung der Arbeitselastizität lautet:

EL=% Vera¨nderung der Bescha¨ftigung% Vera¨nderung des LohnsE_L = \frac{\% \text{ Veränderung der Beschäftigung}}{\% \text{ Veränderung des Lohns}}EL​=% Vera¨nderung des Lohns% Vera¨nderung der Bescha¨ftigung​

Ein Wert von EL>1E_L > 1EL​>1 deutet darauf hin, dass die Beschäftigung stark auf Lohnänderungen reagiert, während EL<1E_L < 1EL​<1 darauf hinweist, dass die Veränderung der Beschäftigung relativ gering ist. Diese Kennzahl ist entscheidend für Unternehmen und politische Entscheidungsträger, da sie hilft zu verstehen, wie Lohnanpassungen die Arbeitsmarktbedingungen beeinflussen können. In einem dynamischen Arbeitsmarkt kann die Labor Elasticity auch durch Faktoren wie Technologie, Branchenstruktur und wirtschaftliche Rahmenbedingungen beeinflusst werden.