StudierendeLehrende

Genome-Wide Association

Die Genome-Wide Association Study (GWAS) ist eine Forschungstechnik, die darauf abzielt, genetische Varianten zu identifizieren, die mit bestimmten Krankheiten oder Merkmalen in Verbindung stehen. Bei dieser Methode werden die Genome vieler Individuen untersucht, um Unterschiede in den DNA-Sequenzen zu finden, die mit einer bestimmten Erkrankung oder einem bestimmten Trait assoziiert sind. Typischerweise werden Millionen von genetischen Markern (z. B. Single Nucleotide Polymorphisms, SNPs) analysiert, um statistische Assoziationen zu identifizieren.

Die grundlegende Annahme von GWAS ist, dass bestimmte genetische Variationen einen Einfluss auf die Anfälligkeit für Krankheiten oder bestimmte Eigenschaften haben. Die Ergebnisse solcher Studien können dazu beitragen, biologische Mechanismen zu verstehen, die Krankheiten zugrunde liegen, und neue Ansätze für die Diagnose sowie Therapie zu entwickeln. Eine Herausforderung bei GWAS ist die Notwendigkeit, große Stichprobengrößen zu verwenden, um ausreichend statistische Power zu gewährleisten und falsch-positive Ergebnisse zu minimieren.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Isoquante Kurve

Eine Isoquant Curve ist ein graphisches Werkzeug in der Produktionstheorie, das die verschiedenen Kombinationen von Produktionsfaktoren darstellt, die zur Erreichung eines bestimmten Produktionsniveaus führen. Diese Kurven sind analog zu Indifferenzkurven in der Konsumtheorie, da sie die gleiche Produktionsmenge (Output) darstellen.

Die Isoquant wird üblicherweise in einem zweidimensionalen Koordinatensystem dargestellt, wobei die Achsen die Mengen der beiden Produktionsfaktoren, wie z.B. Arbeit (L) und Kapital (K), repräsentieren. Ein wichtiger Aspekt der Isoquanten ist die Grenzrate der technologische Substitution (MRTS), die angibt, in welchem Verhältnis ein Faktor durch den anderen ersetzt werden kann, ohne die Produktionsmenge zu verändern. Mathematisch wird dies oft durch die Ableitung der Isoquanten dargestellt, was zeigt, wie sich die Menge eines Faktors ändern muss, um die gleiche Produktionsmenge zu halten.

Isoquanten sind immer nach unten geneigt und niemals konvex zum Ursprung, was bedeutet, dass mit zunehmendem Einsatz eines Faktors der zusätzliche Ertrag durch den anderen Faktor abnimmt (Gesetz des abnehmenden Ertrags).

Medizinische Bildgebung Deep Learning

Medical Imaging Deep Learning bezieht sich auf den Einsatz von künstlichen neuronalen Netzwerken zur Analyse und Interpretation medizinischer Bilder, wie z.B. Röntgenaufnahmen, CT-Scans und MRT-Bilder. Diese Technologien ermöglichen es, komplexe Muster in den Bilddaten zu erkennen, die für das menschliche Auge oft schwer zu identifizieren sind. Der Prozess umfasst typischerweise die folgenden Schritte:

  1. Datensammlung: Große Mengen an annotierten Bilddaten werden benötigt, um das Modell zu trainieren.
  2. Vorverarbeitung: Die Bilder werden bearbeitet, um Rauschen zu reduzieren und die Qualität zu verbessern.
  3. Modelltraining: Durch den Einsatz von Deep-Learning-Algorithmen, wie z.B. Convolutional Neural Networks (CNNs), wird das Modell trainiert, um Merkmale zu erkennen und Diagnosen zu stellen.
  4. Evaluation: Die Leistung des Modells wird überprüft, um sicherzustellen, dass es genaue und zuverlässige Ergebnisse liefert.

Diese Technologien haben das Potenzial, die Diagnosegenauigkeit zu verbessern und die Effizienz in der medizinischen Bildgebung signifikant zu erhöhen.

Poincaré-Vermutung-Beweis

Die Poincaré-Vermutung ist ein zentrales Ergebnis der Topologie, formuliert von Henri Poincaré im Jahr 1904. Sie besagt, dass jede kompakte, zusammenhängende, einfach zusammenhängende 3-dimensionale Mannigfaltigkeit homöomorph zur 3-dimensionalen Sphäre ist. Der Beweis dieser Vermutung wurde von dem russischen Mathematiker Grigori Perelman zwischen 2002 und 2003 erbracht, indem er die Methoden der Ricci-Fluss-Theorie anwandte. Perelmans Ansatz beinhaltete die Kurtz-Analyse von geometrischen Flusslinien, um die Struktur von 3-Mannigfaltigkeiten zu untersuchen und Singularitäten zu kontrollieren. Sein Beweis wurde von der mathematischen Gemeinschaft umfassend überprüft und als korrekt anerkannt, was zur Lösung eines der berühmtesten Probleme der Mathematik führte. Die Poincaré-Vermutung ist nicht nur ein mathematisches Meisterwerk, sondern auch der erste Fall, in dem ein Millennium-Preis für die Lösung eines Problems vergeben wurde.

Gibbs freie Energie

Die Gibbs-Freie-Energie ist ein zentrales Konzept in der Thermodynamik, das verwendet wird, um die Energie eines thermodynamischen Systems zu beschreiben, die zur Durchführung von Arbeit bei konstantem Druck und konstanter Temperatur verfügbar ist. Sie wird oft mit dem Symbol GGG bezeichnet und definiert sich durch die Gleichung:

G=H−TSG = H - TSG=H−TS

Hierbei steht HHH für die Enthalpie des Systems, TTT für die absolute Temperatur in Kelvin und SSS für die Entropie. Ein negativer Wert der Gibbs-Freien-Energie (ΔG<0\Delta G < 0ΔG<0) deutet darauf hin, dass eine chemische Reaktion oder ein physikalischer Prozess spontan ablaufen kann, während ein positiver Wert (ΔG>0\Delta G > 0ΔG>0) anzeigt, dass der Prozess nicht spontan ist. Die Gibbs-Freie-Energie ist somit ein hilfreiches Werkzeug, um die Spontaneität und Richtung chemischer Reaktionen zu beurteilen und spielt eine entscheidende Rolle in der chemischen Thermodynamik.

Allgemeines Gleichgewicht

Der Begriff General Equilibrium bezeichnet in der Wirtschaftstheorie einen Zustand, in dem alle Märkte in einer Volkswirtschaft gleichzeitig im Gleichgewicht sind. Das bedeutet, dass Angebot und Nachfrage in jedem Markt übereinstimmen, sodass es weder Überschüsse noch Engpässe gibt. In diesem Kontext wird angenommen, dass die Entscheidungen der Konsumenten und Produzenten durch die Preise der Güter und Dienstleistungen beeinflusst werden, die sich ebenfalls im Gleichgewicht befinden.

Mathematisch kann der allgemeine Gleichgewichtszustand durch ein System von Gleichungen dargestellt werden, die die Interaktionen zwischen den verschiedenen Märkten modellieren. Ein bekanntes Modell zur Analyse des allgemeinen Gleichgewichts ist das Arrow-Debreu-Modell, das auf der Annahme basiert, dass alle Märkte perfekt und vollständig sind. Der General Equilibrium Ansatz ermöglicht es Ökonomen, die Auswirkungen von wirtschaftlichen Schocks oder politischen Maßnahmen auf die gesamte Wirtschaft zu analysieren, indem sie die Wechselwirkungen zwischen verschiedenen Märkten und Akteuren berücksichtigen.

Stochastischer Abschlag

Der stochastische Diskontierungsfaktor ist ein Konzept in der Finanzwirtschaft, das verwendet wird, um den Zeitwert von Geld zu bewerten, insbesondere unter Unsicherheit. Er beschreibt, wie zukünftige Zahlungen oder Cashflows in der Gegenwart bewertet werden, wobei Unsicherheit über zukünftige Ereignisse berücksichtigt wird. Dies wird häufig durch einen diskontierenden Faktor DtD_tDt​ dargestellt, der die Wahrscheinlichkeit und den Wert zukünftiger Cashflows in einem stochastischen Rahmen berücksichtigt.

Mathematisch kann der stochastische Diskontierungsfaktor als Dt=e−rtTD_t = e^{-r_t T}Dt​=e−rt​T formuliert werden, wobei rtr_trt​ die zeitabhängige, stochastische Diskontierungsrate ist und TTT die Zeit bis zur Zahlung darstellt. Dieser Ansatz ist besonders wichtig in der Bewertung von Finanzinstrumenten, da er es ermöglicht, die Risiken und Unsicherheiten, die mit zukünftigen Zahlungen verbunden sind, angemessen zu berücksichtigen. In der Praxis wird der stochastische Diskontierungsfaktor häufig in Modellen wie dem Black-Scholes-Modell oder in der Preisbildung von Derivaten verwendet.