StudierendeLehrende

Sliding Mode Control Applications

Sliding Mode Control (SMC) ist eine robuste Regelungstechnik, die in verschiedenen Anwendungen eingesetzt wird, insbesondere in der Automatisierungstechnik und Robotik. Diese Methode ist besonders effektiv bei der Steuerung von Systemen mit Unsicherheiten und Störungen, da sie die Dynamik des Systems durch eine gezielte Steuerung des Zustandsraums verändert.

Ein typisches Anwendungsgebiet von SMC ist die Fahrzeugregelung, wo es hilft, die Stabilität und Fahrsicherheit unter wechselnden Bedingungen zu gewährleisten. Auch in der Robotik findet SMC Anwendung, um präzise Bewegungen zu ermöglichen, selbst wenn externe Kräfte auf den Roboter wirken. Darüber hinaus wird SMC in der Wiederherstellung von Energie in erneuerbaren Energiesystemen verwendet, um die Effizienz der Energieumwandlung zu maximieren.

Die Flexibilität und Robustheit von SMC machen es zu einer beliebten Wahl für Systeme, die nichtlineare Dynamiken und zeitvariable Unsicherheiten aufweisen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Neural Architecture Search

Neural Architecture Search (NAS) ist ein automatisierter Prozess zur Optimierung von neuronalen Netzwerkarchitekturen. Ziel ist es, effiziente und leistungsstarke Modelle zu finden, ohne dass Expertenwissen über die spezifische Architektur erforderlich ist. NAS nutzt verschiedene Techniken wie reinforcement learning, evolutionäre Algorithmen oder gradientenbasierte Methoden, um die Architektur zu erkunden und zu bewerten. Dabei wird häufig ein Suchraum definiert, der mögliche Architekturen umfasst, und Algorithmen generieren und testen diese Architekturen iterativ. Der Vorteil von NAS liegt in seiner Fähigkeit, Architekturen zu entdecken, die möglicherweise bessere Leistungen erzielen als manuell entworfene Modelle, was zu Fortschritten in Bereichen wie der Bild- und Sprachverarbeitung führt.

Lieferkette

Die Supply Chain oder Lieferkette bezeichnet das Netzwerk von Organisationen, Menschen, Aktivitäten, Informationen und Ressourcen, die an der Erstellung und Bereitstellung eines Produkts oder einer Dienstleistung beteiligt sind. Sie umfasst sämtliche Schritte vom Rohstoffabbau über die Produktion bis hin zur Auslieferung an den Endverbraucher. Eine effiziente Supply Chain ist entscheidend für die Kostensenkung und Wettbewerbsfähigkeit eines Unternehmens, da sie dazu beiträgt, die Produktionszeiten zu verkürzen und die Lagerbestände zu optimieren. Zu den Hauptkomponenten einer Supply Chain gehören:

  • Lieferanten: Stellen die benötigten Rohstoffe bereit.
  • Produzenten: Wandeln Rohstoffe in fertige Produkte um.
  • Distribution: Organisieren den Transport der Produkte zum Endkunden.

Die Überwachung und Optimierung der Supply Chain erfordert oft den Einsatz von Technologien wie Datenanalyse und Automatisierung, um die Effizienz und Transparenz zu erhöhen.

Runge'scher Approximationssatz

Das Runge'sche Approximations-Theorem ist ein fundamentales Resultat in der Approximationstheorie, das sich mit der Annäherung von Funktionen durch rationale Funktionen beschäftigt. Es besagt, dass jede stetige Funktion, die auf einem kompakten Intervall definiert ist, durch rationale Funktionen beliebig gut approximiert werden kann, wenn man genügend viele Pole außerhalb des Intervalls wählt.

Insbesondere gilt:

  1. Wenn fff eine Funktion ist, die auf einem kompakten Intervall [a,b][a, b][a,b] stetig ist, dann kann für jede positive Zahl ϵ\epsilonϵ eine rationale Funktion RRR gefunden werden, so dass der Unterschied ∣f(x)−R(x)∣<ϵ|f(x) - R(x)| < \epsilon∣f(x)−R(x)∣<ϵ für alle xxx in [a,b][a, b][a,b] ist.
  2. Die Pole der rationalen Funktionen sollten außerhalb des Intervalls liegen, was bedeutet, dass sie nicht in der Nähe der Punkte aaa und bbb liegen dürfen.

Das Theorem hat weitreichende Anwendungen in der numerischen Mathematik und der Signalverarbeitung, da es eine Methode zur Approximation komplexer Funktionen bietet.

Spieltheorie-Gleichgewicht

In der Spieltheorie bezeichnet das Konzept des Gleichgewichts einen Zustand, in dem die Strategien aller Spieler optimal aufeinander abgestimmt sind, sodass keiner der Spieler einen Anreiz hat, seine Strategie einseitig zu ändern. Das bekannteste Gleichgewicht ist das Nash-Gleichgewicht, benannt nach John Nash, das auftritt, wenn jeder Spieler die beste Antwort auf die Strategien der anderen wählt. In einem solchen Gleichgewicht sind die Entscheidungen der Spieler stabil, und es gibt keine Möglichkeit, durch eine Änderung der Strategie einen höheren Nutzen zu erzielen. Mathematisch wird ein Nash-Gleichgewicht oft als ein Paar von Strategien (s1∗,s2∗)(s_1^*, s_2^*)(s1∗​,s2∗​) dargestellt, bei dem für jeden Spieler iii gilt:

ui(s1∗,s2∗)≥ui(s1,s2∗)u_i(s_1^*, s_2^*) \geq u_i(s_1, s_2^*)ui​(s1∗​,s2∗​)≥ui​(s1​,s2∗​)

für alle möglichen Strategien s1s_1s1​ und s2s_2s2​ der anderen Spieler. Spieltheoretisches Gleichgewicht ist von zentraler Bedeutung in der Wirtschaft, da es hilft, das Verhalten von Individuen und Firmen in strategischen Interaktionen zu verstehen und vorherzusagen.

Wavelet-Transformationsanwendungen

Die Wavelet-Transformation ist eine leistungsstarke mathematische Technik, die in verschiedenen Bereichen Anwendung findet, um Signale und Daten zu analysieren und zu verarbeiten. Sie ermöglicht die Zerlegung von Signalen in unterschiedliche Frequenzkomponenten, wodurch sowohl zeitliche als auch frequenzielle Informationen erfasst werden können. Diese Eigenschaft macht sie besonders nützlich in der Signalverarbeitung, wo sie beispielsweise zur Rauschunterdrückung, Kompression und Merkmalsextraktion eingesetzt wird.

In der Bildverarbeitung wird die Wavelet-Transformation häufig zur Bildkompression verwendet, wie z.B. im JPEG 2000-Format, da sie eine effiziente Reduzierung der Dateigröße ermöglicht, ohne die Bildqualität erheblich zu beeinträchtigen. Weitere Anwendungen finden sich in der Datenanalyse, wo sie zur Identifizierung von Mustern und Anomalien in großen Datensätzen dient. Auch in der Medizin, insbesondere in der Analyse von EEG- und EKG-Daten, spielt die Wavelet-Transformation eine bedeutende Rolle, da sie hilft, biologische Signale zu entschlüsseln und zu interpretieren.

Quantenverschränkungsentropie

Quantum Entanglement Entropy ist ein Konzept aus der Quantenmechanik, das die Verschränkung zwischen quantenmechanischen Systemen beschreibt. Es quantifiziert, wie viel Information über ein Teilchen verloren geht, wenn man das andere Teilchen in einem verschränkten Paar betrachtet. In der Regel wird diese Entropie durch die von Neumann-Entropie definiert, die für ein quantenmechanisches System mit der Dichteoperator ρ\rhoρ gegeben ist durch:

S(ρ)=−Tr(ρlog⁡ρ)S(\rho) = -\text{Tr}(\rho \log \rho)S(ρ)=−Tr(ρlogρ)

Hierbei steht Tr\text{Tr}Tr für die Spur des Operators, was eine Art von Summation über die Zustände des Systems ist. Eine hohe Entanglement-Entropie deutet darauf hin, dass die beiden Systeme stark miteinander verbunden sind, während eine niedrige Entropie darauf hinweist, dass sie weitgehend unabhängig sind. Diese Konzepte haben tiefgreifende Auswirkungen auf die Thermodynamik und die Informationsverarbeitung in Quantencomputern.