StudierendeLehrende

Quantum Tunneling Effect

Der Quantum Tunneling Effect beschreibt ein Phänomen in der Quantenmechanik, bei dem Teilchen, wie Elektronen oder Protonen, eine energetische Barriere überwinden können, auch wenn sie nicht genügend Energie haben, um diese Barriere klassisch zu durchdringen. Dies geschieht, weil Teilchen in der Quantenmechanik nicht als Punktobjekte, sondern als Wellen beschrieben werden, was bedeutet, dass sie eine gewisse Wahrscheinlichkeit haben, sich an verschiedenen Orten zu befinden.

Die Wahrscheinlichkeit, dass ein Teilchen die Barriere passiert, wird durch die Schrödinger-Gleichung beschrieben, die die Wellenfunktion des Teilchens bestimmt. Mathematisch wird dies oft mit der Formel für die Transmission TTT dargestellt, die von der Höhe und Breite der Barriere sowie der Energie des Teilchens abhängt. Der Quantum Tunneling Effect ist nicht nur ein faszinierendes physikalisches Konzept, sondern hat auch praktische Anwendungen in der Halbleitertechnologie und der Kernfusion, wo er entscheidend für das Verständnis von Reaktionen in der Sonne und anderen Sternen ist.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Finite Element Stabilität

Die Finite Element Stabilität bezieht sich auf die Fähigkeit eines Finite-Elemente-Modells, numerisch stabile Lösungen für partielle Differentialgleichungen zu liefern. Stabilität ist entscheidend, um sicherzustellen, dass die Lösung des Modells nicht auf unerwartete Weise reagiert, insbesondere bei kleinen Änderungen der Eingabedaten oder der geometrischen Konfiguration. Ein wichtiges Konzept in diesem Zusammenhang ist die Stabilitätsanalyse, die häufig durch die Untersuchung der Eigenwerte des Systems erfolgt. Wenn die Eigenwerte alle positiv sind, spricht man von einer stabilen Lösung. Um die Stabilität zu gewährleisten, ist es oft notwendig, geeignete Basisfunktionen und Diskretisierungen zu wählen, die die physikalischen Eigenschaften des Problems gut widerspiegeln. Bei der Anwendung von Finite-Elemente-Methoden ist zudem darauf zu achten, dass die gewählten Elemente und deren Anordnung die Stabilität der numerischen Lösung unterstützen.

Ladungstransport in Halbleitern

Der Ladungstransport in Halbleitern ist ein entscheidender Prozess, der das Verhalten und die Leistung elektronischer Bauelemente wie Dioden und Transistoren bestimmt. In Halbleitern gibt es zwei Haupttypen von Ladungsträgern: Elektronen und Löcher. Elektronen sind negative Ladungsträger, während Löcher als positive Ladungsträger betrachtet werden, die entstehen, wenn Elektronen aus dem Valenzband in das Leitungsband angeregt werden.

Der Transport dieser Ladungsträger erfolgt durch zwei Hauptmechanismen: Drift und Diffusion. Drift beschreibt die Bewegung der Ladungsträger unter dem Einfluss eines elektrischen Feldes, während Diffusion die Bewegung aufgrund von Konzentrationsgradienten beschreibt. Mathematisch wird der elektrische Strom in einem Halbleiter oft durch die Gleichung

J=q(nμn+pμp)EJ = q(n\mu_n + p\mu_p)EJ=q(nμn​+pμp​)E

beschrieben, wobei JJJ der Stromdichte, qqq die Elementarladung, nnn die Elektronenkonzentration, ppp die Löcherkonzentration, μn\mu_nμn​ und μp\mu_pμp​ die Mobilitäten der Elektronen und Löcher und EEE die elektrische Feldstärke ist. Das Verständnis des Ladungstr

Kalina-Zyklus

Der Kalina Cycle ist ein innovativer thermodynamischer Kreislauf, der zur Energieerzeugung aus Wärmequellen, wie beispielsweise industriellen Abwärme oder geothermischer Energie, eingesetzt wird. Im Gegensatz zu herkömmlichen Dampfkraftwerken nutzt der Kalina Cycle eine Mischung aus Wasser und Ammoniak als Arbeitsmedium, was eine höhere Effizienz und bessere Anpassungsfähigkeit an verschiedene Temperaturbereiche ermöglicht. Durch die Variation der Zusammensetzung des Arbeitsmediums kann die Verdampfungs- und Kondensationskurve optimiert werden, was zu einem verbesserten thermischen Wirkungsgrad führt.

Ein zentrales Merkmal des Kalina Cycles ist die Fähigkeit, bei niedrigen Temperaturen zu arbeiten, was ihn besonders für die Nutzung von Abwärme in der Industrie attraktiv macht. In der Praxis kann die Effizienz des Kalina Cycles bis zu 20-30% über der von traditionellen Dampfkraftwerken liegen, was ihn zu einer vielversprechenden Technologie für die Zukunft der erneuerbaren Energien macht.

Fredholmsche Integralgleichung

Die Fredholm-Integralgleichung ist eine spezielle Form von Integralgleichungen, die in der Mathematik und ihren Anwendungen, insbesondere in der Physik und Ingenieurwissenschaften, eine wichtige Rolle spielt. Sie hat die allgemeine Form:

f(x)=λ∫abK(x,t)ϕ(t) dt+g(x)f(x) = \lambda \int_a^b K(x, t) \phi(t) \, dt + g(x)f(x)=λ∫ab​K(x,t)ϕ(t)dt+g(x)

Hierbei ist f(x)f(x)f(x) eine gegebene Funktion, K(x,t)K(x, t)K(x,t) der sogenannte Kern der Integralgleichung, ϕ(t)\phi(t)ϕ(t) die gesuchte Funktion, und g(x)g(x)g(x) eine Funktion, die in das Problem integriert wird. Der Parameter λ\lambdaλ ist ein Skalar, der oft als Eigenwert bezeichnet wird. Fredholm-Integralgleichungen werden in zwei Typen unterteilt: die erste Art, bei der g(x)=0g(x) = 0g(x)=0 ist, und die zweite Art, bei der g(x)g(x)g(x) nicht null ist. Diese Gleichungen sind besonders nützlich zur Beschreibung von physikalischen Phänomenen, wie z.B. bei der Lösung von Problemen in der Elektrodynamik oder der Quantenmechanik.

Hopcroft-Karp Matching

Das Hopcroft-Karp-Algorithmus ist ein effizienter Algorithmus zur Berechnung eines maximalen Matchings in bipartiten Graphen. Ein bipartiter Graph besteht aus zwei Mengen von Knoten, wobei Kanten nur zwischen Knoten aus verschiedenen Mengen existieren. Der Algorithmus kombiniert zwei Hauptphasen: die Suche nach augmentierenden Pfaden und die Aktualisierung des Matchings. Durch eine geschickte Anwendung von Breadth-First Search (BFS) und Depth-First Search (DFS) gelingt es, die Anzahl der benötigten Iterationen erheblich zu reduzieren, wodurch die Laufzeit auf O(EV)O(E \sqrt{V})O(EV​) sinkt, wobei EEE die Anzahl der Kanten und VVV die Anzahl der Knoten im Graphen ist. Die Idee hinter dem Algorithmus ist, dass durch das Finden und Ausnutzen von augmentierenden Pfaden das Matching schrittweise vergrößert wird, bis kein weiterer augmentierender Pfad mehr gefunden werden kann.

Navier-Stokes

Die Navier-Stokes-Gleichungen sind ein Satz von partiellen Differentialgleichungen, die die Bewegung von fluiden Materialien, wie Flüssigkeiten und Gasen, beschreiben. Sie basieren auf den Grundprinzipien der Erhaltung von Masse, Energie und Impuls. Die Gleichungen berücksichtigen sowohl die Viskosität des Fluids als auch externe Kräfte, wie Druck und Schwerkraft. Mathematisch ausgedrückt, können die Gleichungen in der Form:

ρ(∂u∂t+u⋅∇u)=−∇p+μ∇2u+f\rho \left( \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) = -\nabla p + \mu \nabla^2 \mathbf{u} + \mathbf{f}ρ(∂t∂u​+u⋅∇u)=−∇p+μ∇2u+f

geschrieben werden, wobei ρ\rhoρ die Dichte des Fluids, u\mathbf{u}u die Geschwindigkeit, ppp den Druck, μ\muμ die Viskosität und f\mathbf{f}f externe Kräfte darstellt. Diese Gleichungen sind von zentraler Bedeutung in der Strömungsmechanik und finden Anwendung in verschiedenen Bereichen wie Meteorologie, Ozeanographie und Ingenieurwesen. Die Lösung der Navier-Stokes-Gleichungen ist jedoch oft sehr komplex und in vielen Fällen noch nicht vollständig verstanden, was sie zu einem