Graphene Nanoribbon Transport Properties

Graphene-Nanoribbons (GNRs) sind dünne Streifen aus Graphen, die einzigartige Transporteigenschaften aufweisen und aufgrund ihrer strukturellen Eigenschaften sowohl für elektronische als auch für optoelektronische Anwendungen von großem Interesse sind. Die Transportcharakteristik von GNRs hängt stark von ihrer Breite und der Art ihrer Kanten (zigzag oder armchair) ab, was zu unterschiedlichen elektrischen Leitfähigkeiten führt. Bei zigzag-Nanoribbons zum Beispiel können elektronische Zustände am Kantenrand existieren, die die Leitfähigkeit erhöhen, während armchair-Nanoribbons eine Bandlücke aufweisen, die die Transportfähigkeit bei bestimmten Bedingungen beeinflussen kann.

Die Transportparameter wie Mobilität und Leitfähigkeit werden auch durch Faktoren wie Temperatur, Verunreinigungen und Defekte beeinflusst. Mathematisch lassen sich diese Eigenschaften oft durch die Gleichung für den elektrischen Strom II in Abhängigkeit von der Spannung VV und dem Widerstand RR darstellen:

I=VRI = \frac{V}{R}

Insgesamt zeigen GNRs vielversprechende Eigenschaften für zukünftige Technologien, insbesondere in der Entwicklung von nanoelektronischen Bauelementen und Sensoren.

Weitere verwandte Begriffe

Methoden zur Synthese von Nanopartikeln

Die Synthese von Nanopartikeln umfasst verschiedene Methoden, die es ermöglichen, Materialien auf die Nanoskala zu bringen, typischerweise im Bereich von 1 bis 100 nm. Zu den häufigsten Methoden gehören top-down und bottom-up Ansätze. Beim top-down-Ansatz werden größere Materialien mechanisch oder chemisch zerkleinert, um Nanopartikel zu erzeugen, während der bottom-up-Ansatz auf der chemischen oder physikalischen Zusammenlagerung von Atomen oder Molekülen basiert, um Nanostrukturen zu bilden.

Zu den spezifischen Techniken gehören:

  • Sol-Gel-Prozess: Hierbei werden chemische Lösungen verwendet, um eine gelartige Substanz zu erzeugen, die dann in Nanopartikel umgewandelt wird.
  • Mikroemulsion: Diese Methode nutzt Emulsionen, um Nanopartikel in einer kontrollierten Umgebung zu synthetisieren.
  • Chemische Dampfablagerung (CVD): Diese Technik ermöglicht die Abscheidung von Nanopartikeln aus einer gasförmigen Phase auf einer Substratoberfläche.

Jede dieser Methoden hat ihre eigenen Vor- und Nachteile in Bezug auf Kosten, Kontrolle über die Partikelgröße und -form sowie Anwendungsgebiete.

Monopolistische Konkurrenz

Monopolistische Konkurrenz ist ein Marktstrukturtyp, der Merkmale sowohl eines Monopols als auch eines Wettbewerbs aufweist. In diesem Markt gibt es viele Anbieter, die ähnliche, aber nicht identische Produkte anbieten, was den Unternehmen die Möglichkeit gibt, Preise unabhängig zu setzen. Jedes Unternehmen hat eine gewisse Marktmacht, da die Produkte differenziert sind, was bedeutet, dass sie nicht perfekt substituierbar sind.

Ein weiteres wichtiges Merkmal ist der freie Marktzugang, was bedeutet, dass neue Unternehmen relativ einfach in den Markt eintreten oder ihn verlassen können. Dies führt zu einem langfristigen Gleichgewicht, in dem die Gewinne der Unternehmen tendieren, gegen null zu gehen, da neue Anbieter in den Markt eintreten, wenn bestehende Anbieter überdurchschnittliche Gewinne erzielen. Die Preise in einem monopolistischen Wettbewerb liegen typischerweise über den Grenzkosten, was zu einer ineffizienten Allokation von Ressourcen führt.

Hilbertraum

Ein Hilbertraum ist ein fundamentaler Begriff in der Mathematik und Physik, der eine vollständige und abgeschlossene Struktur für unendliche Dimensionen beschreibt. Er ist eine spezielle Art von Vektorraum, der mit einer inneren Produktstruktur ausgestattet ist, was bedeutet, dass es eine Funktion gibt, die zwei Vektoren einen Wert zuordnet und die Eigenschaften der Linearität, Symmetrie und Positivität erfüllt. Diese innere Produktstruktur ermöglicht es, Konzepte wie Längen und Winkel zwischen Vektoren zu definieren, was in der klassischen Geometrie und der Quantenmechanik von großer Bedeutung ist. Mathematisch wird ein Hilbertraum oft durch die Menge HH, die Vektoren ψ\psi und das innere Produkt ψϕ\langle \psi | \phi \rangle definiert, wobei ψ,ϕH\psi, \phi \in H. Ein wichtiges Merkmal von Hilberträumen ist ihre Vollständigkeit: jede Cauchy-Folge in einem Hilbertraum konvergiert zu einem Punkt im Raum. Hilberträume sind entscheidend für die Formulierung der Quantenmechanik, da Zustände eines quantenmechanischen Systems als Vektoren in einem Hilbertraum dargestellt werden.

Stochastische Spiele

Stochastische Spiele sind eine Erweiterung der klassischen Spieltheorie, die Unsicherheiten und zeitliche Dynamiken berücksichtigt. In diesen Spielen interagieren mehrere Spieler nicht nur mit den Entscheidungen der anderen, sondern auch mit einem stochastischen (zufälligen) Element, das den Zustand des Spiels beeinflusst. Die Spieler müssen Strategien entwickeln, die sowohl ihre eigenen Ziele als auch die möglichen Zufallsereignisse berücksichtigen. Ein typisches Merkmal stochastischer Spiele ist die Verwendung von Zuständen, die sich im Laufe der Zeit ändern können, wobei die Übergänge zwischen Zuständen durch Wahrscheinlichkeiten beschrieben werden.

Die mathematische Formulierung eines stochastischen Spiels kann oft durch eine Markov-Entscheidungsprozess (MDP) beschrieben werden, wobei die Belohnungen und Übergangswahrscheinlichkeiten von den Aktionen der Spieler abhängen. Solche Spiele finden Anwendung in verschiedenen Bereichen, wie z.B. in der Wirtschaft, Ökonomie und Biologie, wo Entscheidungen unter Unsicherheit und strategische Interaktionen eine Rolle spielen.

Fresnel-Gleichungen

Die Fresnel-Gleichungen beschreiben, wie Licht an der Grenzfläche zwischen zwei unterschiedlichen Medien reflektiert und gebrochen wird. Sie sind von entscheidender Bedeutung für das Verständnis optischer Phänomene und finden Anwendung in Bereichen wie der Optik, Photonik und Materialwissenschaft. Die Gleichungen berücksichtigen die Polarisation des Lichts und unterscheiden zwischen s- und p-polarisiertem Licht. Die reflektierte und die transmittierte Lichtintensität können durch die folgenden Formeln ausgedrückt werden:

Für die Reflexion:

Rs=n1cos(θi)n2cos(θt)n1cos(θi)+n2cos(θt)2R_s = \left| \frac{n_1 \cos(\theta_i) - n_2 \cos(\theta_t)}{n_1 \cos(\theta_i) + n_2 \cos(\theta_t)} \right|^2 Rp=n2cos(θi)n1cos(θt)n2cos(θi)+n1cos(θt)2R_p = \left| \frac{n_2 \cos(\theta_i) - n_1 \cos(\theta_t)}{n_2 \cos(\theta_i) + n_1 \cos(\theta_t)} \right|^2

Und für die Transmission:

Ts=1RsT_s = 1 - R_s Tp=1RpT_p = 1 - R_p

Hierbei sind n1n_1 und n2n_2 die Brechungsindices der beiden Medien, $ \theta_i

Perfekte Hashfunktion

Perfect Hashing ist eine Technik zur Erstellung von Hash-Tabellen, die garantiert, dass es keine Kollisionen gibt, wenn man eine endliche Menge von Schlüsseln in die Tabelle einfügt. Im Gegensatz zu normalen Hashing-Methoden, bei denen Kollisionen durch verschiedene Strategien wie Verkettung oder offene Adressierung behandelt werden, erzeugt Perfect Hashing eine Funktion, die jeden Schlüssel eindeutig auf einen Index in der Tabelle abbildet. Diese Methode besteht in der Regel aus zwei Phasen: Zunächst wird eine primäre Hash-Funktion entwickelt, um die Schlüssel in Buckets zu gruppieren, und dann wird für jeden Bucket eine sekundäre Hash-Funktion erstellt, die die Schlüssel innerhalb des Buckets perfekt abbildet.

Die Herausforderung bei Perfect Hashing liegt in der Notwendigkeit, eine geeignete Hash-Funktion zu finden, die die Kollisionen vermeidet und gleichzeitig die Effizienz des Zugriffs auf die Daten gewährleistet. Mathematisch kann man Perfect Hashing als eine Abbildung h:S[0,m1]h: S \to [0, m-1] betrachten, wobei SS die Menge der Schlüssel und mm die Größe der Hash-Tabelle ist. Perfect Hashing ist besonders nützlich in Anwendungen, wo die Menge der Schlüssel fest und bekannt ist, wie in kompakten Datenstrukturen oder bei der Implementierung von Symboltabellen.

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.