StudierendeLehrende

H-Bridge Pulse Width Modulation

Die H-Brücke ist eine Schaltung, die es ermöglicht, Gleichstrommotoren in beiden Richtungen zu betreiben, indem sie die Polarität der Versorgungsspannung umkehrt. Die Pulsweitenmodulation (PWM) ist eine Technik, die verwendet wird, um die Leistung, die an den Motor geliefert wird, zu steuern, indem die durchschnittliche Spannung durch schnelles Ein- und Ausschalten der Stromversorgung variiert wird. Bei der PWM wird das Verhältnis von „Ein-Zeit“ zu „Aus-Zeit“ als Duty Cycle bezeichnet und in Prozent ausgedrückt. Ein höherer Duty Cycle bedeutet, dass der Motor mehr Leistung erhält, was zu einer höheren Drehzahl führt, während ein niedrigerer Duty Cycle die Leistung und Drehzahl reduziert. Mathematisch kann der Duty Cycle als
Duty Cycle=tonton+toff×100%\text{Duty Cycle} = \frac{t_{\text{on}}}{t_{\text{on}} + t_{\text{off}}} \times 100 \%Duty Cycle=ton​+toff​ton​​×100%
dargestellt werden, wobei tont_{\text{on}}ton​ die Zeit ist, in der der Strom fließt, und tofft_{\text{off}}toff​ die Zeit, in der der Strom unterbrochen ist. Diese Technik ermöglicht eine präzise Steuerung der Motorleistung und ist besonders nützlich in Anwendungen wie Robotik und industriellen Steuerungen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Markov-Ketten

Markov-Ketten sind mathematische Modelle, die eine Sequenz von events beschreiben, bei denen der zukünftige Zustand nur vom gegenwärtigen Zustand abhängt und nicht von den vorherigen Zuständen. Dieses Konzept wird als Markov-Eigenschaft bezeichnet. Formell lässt sich eine Markov-Kette als eine Menge von Zuständen und Übergangswahrscheinlichkeiten zwischen diesen Zuständen darstellen. Wenn wir einen Zustand StS_tSt​ zu einem Zeitpunkt ttt betrachten, gilt:

P(St+1∣St,St−1,…,S0)=P(St+1∣St)P(S_{t+1} | S_t, S_{t-1}, \ldots, S_0) = P(S_{t+1} | S_t)P(St+1​∣St​,St−1​,…,S0​)=P(St+1​∣St​)

Dies bedeutet, dass die Wahrscheinlichkeit, in den nächsten Zustand überzugehen, nur vom aktuellen Zustand abhängt. Markov-Ketten finden Anwendung in verschiedenen Bereichen, wie der Statistik, der Wirtschaft und der Künstlichen Intelligenz, etwa in der Vorhersage von Ereignissen oder der Analyse von Entscheidungsprozessen.

Cantor'sche Funktionseigenschaften

Die Cantor-Funktion, auch bekannt als Cantor-Stufenfunktion oder Cantor-Verteilung, ist eine interessante mathematische Funktion, die auf dem Cantor-Menge basiert. Ihre Eigenschaften sind bemerkenswert, insbesondere weil sie nicht konstant ist, aber dennoch überall differenzierbar ist, mit der Ausnahme von einer Menge, die Maß null hat. Diese Funktion ist monoton, was bedeutet, dass sie nie abnimmt, und sie nimmt jeden Wert im Intervall [0,1][0, 1][0,1] an, obwohl die Cantor-Menge selbst nur ein Maß von null hat. Ein weiteres wichtiges Merkmal ist, dass die Cantor-Funktion in jedem Punkt, der nicht in der Cantor-Menge liegt, eine positive Ableitung hat, während sie an den Punkten der Cantor-Menge selbst eine Ableitung von null hat. Zusammengefasst zeigt die Cantor-Funktion faszinierende Eigenschaften von Kontinuität und Differenzierbarkeit in einer Weise, die unseren intuitiven Vorstellungen von Funktionen widerspricht.

Bode-Diagramm Phasenverhalten

Der Bode-Plot ist ein wichtiges Werkzeug in der Regelungstechnik und Signalverarbeitung, das zur Analyse der Frequenzantwort eines Systems verwendet wird. Der Phasenteil des Bode-Plots zeigt, wie die Phase eines Signals in Abhängigkeit von der Frequenz variiert. In der Regel wird die Phase in Grad angegeben und zeigt, wie viel das Ausgangssignal im Vergleich zum Eingangssignal verzögert oder vorauseilt.

Die Phase kann durch verschiedene Faktoren beeinflusst werden, darunter Pol- und Nullstellen des Systems. Zum Beispiel führt ein Pol bei einer Frequenz ω\omegaω typischerweise zu einem Phasenverlust von 90 Grad, während ein Nullpunkt zu einem Phasenanstieg von 90 Grad führt. Die allgemeine Formel für die Phasenverschiebung ϕ\phiϕ eines Systems kann in Form eines Transfersystems H(jω)H(j\omega)H(jω) dargestellt werden als:

ϕ(ω)=tan⁡−1(Im(H(jω))Re(H(jω)))\phi(\omega) = \tan^{-1} \left( \frac{\text{Im}(H(j\omega))}{\text{Re}(H(j\omega))} \right)ϕ(ω)=tan−1(Re(H(jω))Im(H(jω))​)

Die Analyse des Phasenverhaltens ist entscheidend, um die Stabilität eines Systems zu beurteilen, insbesondere durch die Phasenreserve, die angibt, wie viel zusätzliche Phasenverschiebung das System tolerieren kann, bevor es instabil

Cobb-Douglas-Produktion

Die Cobb-Douglas-Produktionsfunktion ist ein weit verbreitetes Modell in der Ökonomie, das die Beziehung zwischen den Inputs (Produktionsfaktoren) und dem Output (Produkt) beschreibt. Sie hat die allgemeine Form:

Q=ALαKβQ = A L^\alpha K^\betaQ=ALαKβ

Hierbei steht QQQ für die produzierte Menge, LLL für die Menge an Arbeit, KKK für die Menge an Kapital, AAA ist ein technischer Effizienzparameter, und α\alphaα und β\betaβ sind die Output-Elastizitäten, die die prozentuale Veränderung des Outputs bei einer prozentualen Veränderung der Inputs darstellen. Die Summe der Exponenten α+β\alpha + \betaα+β gibt Aufschluss über die Skalenerträge: Wenn die Summe gleich 1 ist, handelt es sich um konstante Skalenerträge; bei weniger als 1 um abnehmende und bei mehr als 1 um zunehmende Skalenerträge. Diese Funktion ist besonders nützlich, um die Effizienz der Produktionsprozesse zu analysieren und zu verstehen, wie die Faktoren Arbeit und Kapital zusammenwirken, um den Output zu maximieren.

Genregulationsnetzwerk

Ein Gene Regulatory Network (GRN) ist ein komplexes System von Wechselwirkungen zwischen Genen und den Proteinen, die deren Expression steuern. Diese Netzwerke bestehen aus Transkriptionsfaktoren, die an spezifische DNA-Sequenzen binden und somit die Aktivität von Zielgenen regulieren. Die Interaktionen innerhalb eines GRN sind oft nichtlinear und können sowohl positiv (Aktivierung) als auch negativ (Repression) sein, was zu einer Vielzahl von biologischen Reaktionen führt.

Ein GRN spielt eine entscheidende Rolle während der Entwicklung, der Zellidentität und der Reaktion auf Umweltveränderungen. Um die Dynamik eines GRN zu verstehen, verwenden Wissenschaftler häufig mathematische Modelle, die Differentialgleichungen beinhalten, um die zeitliche Veränderung der Genexpression zu beschreiben. Diese Netzwerke sind nicht nur fundamental für das Verständnis der Genregulation, sondern auch für die Entwicklung neuer Therapien in der Medizin, da Dysfunktionen in diesen Netzwerken zu Krankheiten führen können.

Hotellings Regel

Hotelling's Regel ist ein Konzept aus der Wirtschaftswissenschaft, das sich mit der optimalen Ernte von nicht erneuerbaren Ressourcen befasst. Es besagt, dass die Ausbeutung einer nicht erneuerbaren Ressource über die Zeit so erfolgen sollte, dass der Wert der abgebauten Menge im Zeitverlauf gleich dem Wert der nicht abgebauten Menge plus dem Zinssatz ist. Dies bedeutet, dass die Grenzpreise der Ressource mit der Zeit steigen sollten, um die Opportunitätskosten zu reflektieren. Mathematisch wird dies oft durch die Gleichung dargestellt:

dP(t)dt=r⋅P(t)\frac{dP(t)}{dt} = r \cdot P(t)dtdP(t)​=r⋅P(t)

wobei P(t)P(t)P(t) der Preis der Ressource zu einem bestimmten Zeitpunkt und rrr der Zinssatz ist. Diese Regel hilft dabei, die nachhaltige Nutzung von Ressourcen zu planen und sicherzustellen, dass zukünftige Generationen ebenfalls von diesen Ressourcen profitieren können.