StudierendeLehrende

H-Bridge Pulse Width Modulation

Die H-Brücke ist eine Schaltung, die es ermöglicht, Gleichstrommotoren in beiden Richtungen zu betreiben, indem sie die Polarität der Versorgungsspannung umkehrt. Die Pulsweitenmodulation (PWM) ist eine Technik, die verwendet wird, um die Leistung, die an den Motor geliefert wird, zu steuern, indem die durchschnittliche Spannung durch schnelles Ein- und Ausschalten der Stromversorgung variiert wird. Bei der PWM wird das Verhältnis von „Ein-Zeit“ zu „Aus-Zeit“ als Duty Cycle bezeichnet und in Prozent ausgedrückt. Ein höherer Duty Cycle bedeutet, dass der Motor mehr Leistung erhält, was zu einer höheren Drehzahl führt, während ein niedrigerer Duty Cycle die Leistung und Drehzahl reduziert. Mathematisch kann der Duty Cycle als
Duty Cycle=tonton+toff×100%\text{Duty Cycle} = \frac{t_{\text{on}}}{t_{\text{on}} + t_{\text{off}}} \times 100 \%Duty Cycle=ton​+toff​ton​​×100%
dargestellt werden, wobei tont_{\text{on}}ton​ die Zeit ist, in der der Strom fließt, und tofft_{\text{off}}toff​ die Zeit, in der der Strom unterbrochen ist. Diese Technik ermöglicht eine präzise Steuerung der Motorleistung und ist besonders nützlich in Anwendungen wie Robotik und industriellen Steuerungen.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Protein-Faltungs-Algorithmen

Protein Folding Algorithms sind computational Methods, die entwickelt wurden, um die dreidimensionale Struktur von Proteinen aus ihrer linearen Aminosäuresequenz vorherzusagen. Die Faltung von Proteinen ist ein komplexer Prozess, der durch Wechselwirkungen zwischen den Aminosäuren bestimmt wird, und das Ziel dieser Algorithmen ist es, die energetisch günstigste Konformation zu finden. Es gibt verschiedene Ansätze, um dieses Problem zu lösen, darunter:

  • Molekulardynamik: Simuliert die Bewegung von Atomen über die Zeit.
  • Monte-Carlo-Methoden: Nutzt Zufallstechniken, um mögliche Faltungen zu erkunden.
  • Künstliche Intelligenz: Verwendet Machine Learning, um Vorhersagen basierend auf großen Datensätzen zu treffen.

Ein bekanntes Beispiel ist AlphaFold, das Deep Learning einsetzt, um die Faltung von Proteinen mit hoher Genauigkeit vorherzusagen. Diese Fortschritte haben nicht nur die Grundlagenforschung revolutioniert, sondern auch wichtige Anwendungen in der Arzneimittelentwicklung und der Biotechnologie ermöglicht.

Giffen-Gut empirische Beispiele

Ein Giffen Gut ist ein wirtschaftliches Konzept, das eine paradoxe Situation beschreibt, in der der Preis eines Gutes steigt und die nachgefragte Menge ebenfalls zunimmt. Dies steht im Widerspruch zum Gesetz der Nachfrage, das besagt, dass bei steigendem Preis die Nachfrage normalerweise sinkt. Ein klassisches Beispiel für ein Giffen Gut sind Grundnahrungsmittel wie Brot oder Reis in ärmeren Gesellschaften. Wenn der Preis für solche Lebensmittel steigt, haben die Verbraucher oft nicht genug Einkommen, um sich teurere Nahrungsmittel zu leisten, und greifen stattdessen auf größere Mengen des teureren Grundnahrungsmittels zurück, um ihren Kalorienbedarf zu decken. Ein empirisches Beispiel hierfür könnte die Situation in Irland während der Kartoffelkrise im 19. Jahrhundert sein, als der Preis für Kartoffeln stieg und die Menschen trotz der höheren Kosten mehr Kartoffeln kauften, weil sie die Hauptnahrungsquelle darstellten.

Cobb-Douglas-Produktion

Die Cobb-Douglas-Produktionsfunktion ist ein weit verbreitetes Modell in der Ökonomie, das die Beziehung zwischen den Inputs (Produktionsfaktoren) und dem Output (Produkt) beschreibt. Sie hat die allgemeine Form:

Q=ALαKβQ = A L^\alpha K^\betaQ=ALαKβ

Hierbei steht QQQ für die produzierte Menge, LLL für die Menge an Arbeit, KKK für die Menge an Kapital, AAA ist ein technischer Effizienzparameter, und α\alphaα und β\betaβ sind die Output-Elastizitäten, die die prozentuale Veränderung des Outputs bei einer prozentualen Veränderung der Inputs darstellen. Die Summe der Exponenten α+β\alpha + \betaα+β gibt Aufschluss über die Skalenerträge: Wenn die Summe gleich 1 ist, handelt es sich um konstante Skalenerträge; bei weniger als 1 um abnehmende und bei mehr als 1 um zunehmende Skalenerträge. Diese Funktion ist besonders nützlich, um die Effizienz der Produktionsprozesse zu analysieren und zu verstehen, wie die Faktoren Arbeit und Kapital zusammenwirken, um den Output zu maximieren.

Slutsky-Gleichung

Die Slutsky-Gleichung ist eine fundamentale Beziehung in der Mikroökonomie, die die Auswirkungen von Preisänderungen auf die Nachfrage nach Gütern beschreibt. Sie zerlegt die Gesamtwirkung einer Preisänderung in zwei Komponenten: den Substitutionseffekt und den Einkommenseffekt. Der Substitutionseffekt zeigt, wie sich die Nachfrage nach einem Gut ändert, wenn der Preis sinkt und der Konsument zu diesem Gut substituiert, während der Einkommenseffekt zeigt, wie sich die Nachfrage ändert, weil sich das reale Einkommen des Konsumenten aufgrund der Preisänderung verändert.

Mathematisch wird die Slutsky-Gleichung wie folgt ausgedrückt:

∂xi∂pj=∂hi∂pj−xj∂xi∂m\frac{\partial x_i}{\partial p_j} = \frac{\partial h_i}{\partial p_j} - x_j \frac{\partial x_i}{\partial m}∂pj​∂xi​​=∂pj​∂hi​​−xj​∂m∂xi​​

Hierbei steht xix_ixi​ für die nachgefragte Menge des Gutes iii, pjp_jpj​ für den Preis des Gutes jjj und mmm für das Einkommen des Konsumenten. Die Gleichung verdeutlicht, dass die Veränderung der Nachfrage nach Gut iii bezüglich der Preisänderung von Gut jjj sowohl von der Veränderung der optimalen Nachfrage als auch von der Veränderung des Einkommens abhängt. Die Slutsky

Graphen-basierte Feldeffekttransistoren

Graphenbasierte Feldeffekttransistoren (GFETs) sind eine innovative Art von Transistoren, die Graphen als aktives Material verwenden. Graphen ist eine einlagige Struktur aus Kohlenstoffatomen, die in einem zweidimensionalen Gitter angeordnet sind und außergewöhnliche elektrische, thermische und mechanische Eigenschaften aufweisen. GFETs nutzen die hohe Beweglichkeit der Elektronen in Graphen, was zu schnellen Schaltzeiten und geringer Energieverbrauch führt. Diese Transistoren können in verschiedenen Anwendungen eingesetzt werden, darunter in der Hochfrequenztechnik, der Sensorik und in der flexiblen Elektronik. Ein entscheidendes Merkmal von GFETs ist die Möglichkeit, die Leitfähigkeit durch das Anlegen eines elektrischen Feldes an das Graphenmaterial zu steuern, was sie zu einem vielversprechenden Kandidaten für zukünftige Transistor-Entwicklungen macht.

Enzymatische Kinetik

Die Enzymkatalyse-Kinetik beschäftigt sich mit der Geschwindigkeit von enzymatischen Reaktionen und den Faktoren, die diese Geschwindigkeit beeinflussen. Enzyme sind biologische Katalysatoren, die die Aktivierungsenergie von chemischen Reaktionen herabsetzen und somit die Reaktionsgeschwindigkeit erhöhen. Die klassische Kinetik enzymatischer Reaktionen wird oft durch das Michaelis-Menten-Modell beschrieben, das die Beziehung zwischen der Substratkonzentration und der Reaktionsgeschwindigkeit darstellt. Die grundlegende Gleichung lautet:

v=Vmax⋅[S]Km+[S]v = \frac{{V_{max} \cdot [S]}}{{K_m + [S]}}v=Km​+[S]Vmax​⋅[S]​

Hierbei ist vvv die Reaktionsgeschwindigkeit, [S][S][S] die Substratkonzentration, VmaxV_{max}Vmax​ die maximale Reaktionsgeschwindigkeit und KmK_mKm​ die Michaelis-Konstante, die die Affinität des Enzyms zum Substrat beschreibt. Die Analyse der Enzymkinetik bietet wichtige Einblicke in die Funktionsweise von Enzymen und ihre regulatorischen Mechanismen, was für die biochemische Forschung und die Entwicklung von Medikamenten von entscheidender Bedeutung ist.