StudierendeLehrende

Heap Allocation

Heap Allocation ist ein Verfahren zur dynamischen Zuweisung von Speicher in einem Computerprogramm. Im Gegensatz zur statischen Zuweisung, bei der die Größe des Speichers zur Compile-Zeit festgelegt wird, ermöglicht die Heap Allocation, dass Programme während ihrer Laufzeit Speicher anfordern und freigeben. Dies geschieht in der Regel durch Funktionen wie malloc oder new in C und C++. Der Speicher wird im sogenannten Heap verwaltet, einem speziellen Bereich des Arbeitsspeichers, der für dynamische Speicheroperationen reserviert ist.

Vorteile der Heap Allocation sind die Flexibilität und die Möglichkeit, große Datenmengen zu verwalten, die zur Compile-Zeit unbekannt sind. Allerdings kann sie auch zu Fragmentierung führen und erfordert eine sorgfältige Verwaltung, um Speicherlecks zu vermeiden, wenn nicht mehr benötigter Speicher nicht wieder freigegeben wird.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Quantitative Finanzrisikomodellierung

Quantitative Finance Risk Modeling bezieht sich auf die Anwendung mathematischer und statistischer Methoden zur Bewertung und Steuerung von finanziellen Risiken in Märkten und Institutionen. Ziel ist es, potenzielle Verluste zu quantifizieren und Strategien zu entwickeln, um diese Risiken zu minimieren. Zu den häufig verwendeten Modellen gehören Value-at-Risk (VaR), Stress-Testing und Monte-Carlo-Simulationen, die jeweils unterschiedliche Ansätze zur Risikomessung bieten.

Ein zentrales Konzept in der Risikoanalyse ist die Korrelation zwischen verschiedenen Finanzinstrumenten, die oft durch Matrizen wie die Kovarianzmatrix dargestellt werden kann. Mathematisch kann dies durch die Formel

Cov(X,Y)=E[(X−μX)(Y−μY)]Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]Cov(X,Y)=E[(X−μX​)(Y−μY​)]

ausgedrückt werden, wobei Cov(X,Y)Cov(X, Y)Cov(X,Y) die Kovarianz zwischen den Variablen XXX und YYY und EEE den Erwartungswert darstellt. Die präzise Modellierung von Risiken ermöglicht es Finanzinstituten, informierte Entscheidungen zu treffen und ihre Risikopositionen effektiv zu steuern.

Granger-Kausalität

Die Granger-Kausalität ist ein statistisches Konzept, das verwendet wird, um zu bestimmen, ob eine Zeitreihe eine andere beeinflussen kann. Es basiert auf der Annahme, dass, wenn eine Zeitreihe XXX Granger-kausal für eine andere Zeitreihe YYY ist, dann sollte das Hinzufügen von Informationen über XXX die Vorhersage von YYY verbessern. Mathematisch wird dies durch den Vergleich der Vorhersagegenauigkeit von YYY unter zwei Modellen untersucht: einem, das nur die Vergangenheit von YYY betrachtet, und einem anderen, das zusätzlich die Vergangenheit von XXX einbezieht.

Ein typisches Verfahren zur Überprüfung der Granger-Kausalität ist der Granger-Test, der häufig in der Ökonometrie eingesetzt wird. Es ist wichtig zu beachten, dass Granger-Kausalität keine wahre Kausalität bedeutet; sie zeigt lediglich, dass es eine zeitliche Abfolge gibt, die auf einen möglichen Einfluss hindeutet. Daher sollte man bei der Interpretation der Ergebnisse stets vorsichtig sein und weitere Analysen durchführen, um tatsächliche kausale Beziehungen zu bestätigen.

Bose-Einstein-Kondensat

Ein Bose-Einstein-Kondensat (BEC) ist ein Zustand der Materie, der entsteht, wenn eine Gruppe von bosonischen Atomen auf extrem niedrige Temperaturen, nahe dem absoluten Nullpunkt, abgekühlt wird. In diesem Zustand verlieren die Atome ihre individuelle Identität und verhalten sich wie ein einzelnes Quantenteilchen. Die Quantenmechanik spielt eine entscheidende Rolle, da die Wellenfunktionen der Atome überlappen und sie sich kooperativ verhalten.

Ein BEC wurde erstmals 1995 von Eric Cornell und Carl Wieman experimentell hergestellt, was eine wichtige Bestätigung der theoretischen Vorhersagen von Satyendra Nath Bose und Albert Einstein in den 1920er Jahren darstellt. Zu den bemerkenswerten Eigenschaften eines BEC gehören:

  • Superfluidität: Es kann ohne Reibung fließen.
  • Interferenzmuster: BECs zeigen Interferenz, ähnlich wie Lichtwellen.

Die Erforschung von BECs hat nicht nur unser Verständnis der Quantenmechanik vertieft, sondern auch Anwendungen in Bereichen wie der Quantencomputing und der Präzisionsmessungen eröffnet.

Kovalente organische Gerüste

Covalent Organic Frameworks (COFs) sind eine Klasse von porösen Materialien, die durch kovalente Bindungen zwischen organischen Bausteinen gebildet werden. Diese Materialien zeichnen sich durch ihre hohe Stabilität, gute Zugänglichkeit für Moleküle und designbare Porenstrukturen aus, was sie für eine Vielzahl von Anwendungen in der Katalyse, Gasspeicherung und in der Sensorik interessant macht. COFs besitzen eine hohe spezifische Oberfläche, die oft mehrere tausend Quadratmeter pro Gramm betragen kann, was ihre Effizienz in der Moleküladsorption und Trennung erhöht. Durch die gezielte Auswahl der Bausteine und der Reaktionsbedingungen können Forscher die Eigenschaften der COFs maßgeschneidert anpassen, um spezifische funktionale Anforderungen zu erfüllen. Diese Flexibilität macht COFs zu einem vielversprechenden Material in der modernen Materialwissenschaft und Nanotechnologie.

Spektralradius

Der Spektralradius einer Matrix ist ein zentraler Begriff in der linearen Algebra und beschreibt den Betrag des größten Eigenwerts einer gegebenen Matrix. Mathematisch wird der Spektralradius ρ(A)\rho(A)ρ(A) einer Matrix AAA definiert als:

ρ(A)=max⁡{∣λ∣:λ ist ein Eigenwert von A}\rho(A) = \max\{ |\lambda| : \lambda \text{ ist ein Eigenwert von } A \}ρ(A)=max{∣λ∣:λ ist ein Eigenwert von A}

Der Spektralradius hat wichtige Anwendungen in verschiedenen Bereichen, insbesondere in der Stabilitätstheorie und der numerischen Analyse. Ein Spektralradius kleiner als eins (ρ(A)<1\rho(A) < 1ρ(A)<1) deutet darauf hin, dass iterierte Anwendungen der Matrix auf einen Vektor zu einem Nullvektor konvergieren, was in dynamischen Systemen Stabilität bedeutet. Darüber hinaus spielt der Spektralradius eine Rolle bei der Untersuchung von Matrizen in Bezug auf ihre Norm und ihre Inversen.

Chandrasekhar-Massengrenze

Das Chandrasekhar Mass Limit ist eine fundamentale Grenze in der Astrophysik, die die maximale Masse eines stabilen weißen Zwergs beschreibt. Diese Grenze beträgt etwa 1,4 M⊙1,4 \, M_{\odot}1,4M⊙​ (Sonnenmassen) und wurde nach dem indischen Astrophysiker Subrahmanyan Chandrasekhar benannt, der sie in den 1930er Jahren entdeckte. Wenn ein weißer Zwerg diese Masse überschreitet, kann der Druck, der durch den Elektronendruck erzeugt wird, nicht mehr ausreichen, um der Gravitation entgegenzuwirken. Dies führt zur Gravitationskollaps und kann schließlich zur Bildung einer Supernova oder eines Neutronensterns führen. Die Erkenntnis des Chandrasekhar Mass Limit hat weitreichende Konsequenzen für das Verständnis der Entwicklung von Sternen und der Struktur des Universums.