StudierendeLehrende

Financial Derivatives Pricing

Die Preisgestaltung finanzieller Derivate ist ein zentraler Aspekt der Finanzmärkte und umfasst Methoden zur Bewertung von Finanzinstrumenten, deren Wert von der Preisentwicklung eines zugrunde liegenden Vermögenswerts abhängt. Zu den gängigsten Derivaten gehören Optionen, Futures und Swaps. Die Bewertung dieser Instrumente erfolgt häufig mithilfe mathematischer Modelle, wobei das bekannteste Modell das Black-Scholes-Modell ist, das zur Preisbestimmung von europäischen Optionen verwendet wird.

Die Preisformel für eine europäische Call-Option lautet:

C=S0N(d1)−Xe−rTN(d2)C = S_0 N(d_1) - X e^{-rT} N(d_2)C=S0​N(d1​)−Xe−rTN(d2​)

wobei CCC der Preis der Call-Option, S0S_0S0​ der aktuelle Preis des zugrunde liegenden Vermögenswerts, XXX der Ausübungspreis, rrr der risikofreie Zinssatz, TTT die Zeit bis zur Fälligkeit und N(d)N(d)N(d) die kumulative Verteilungsfunktion der Standardnormalverteilung ist. Die Variablen d1d_1d1​ und d2d_2d2​ werden wie folgt definiert:

d1=ln⁡(S0/X)+(r+σ2/2)TσTd_1 = \frac{\ln(S_0/X) + (r + \sigma^2/2)T}{\sigma \sqrt{T}}d1​=σT​ln(S0​/X)+(r+σ2/2)T​ d2=d_2 =d2​=

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Banach-Tarski-Paradoxon

Das Banach-Tarski-Paradoxon ist ein faszinierendes Resultat aus der Mengenlehre und der Mathematik, das besagt, dass es möglich ist, eine feste Kugel in drei Dimensionen in endlich viele nicht überlappende Teile zu zerlegen und diese Teile dann so zu verschieben und zu drehen, dass man zwei identische Kopien der ursprünglichen Kugel erhält. Dies widerspricht unserem intuitiven Verständnis von Volumen und Materie, da es scheinbar gegen die Gesetze der Physik verstößt.

Die zugrunde liegende Idee basiert auf der Verwendung von nicht messbaren Mengen und der Axiomatik der Zermelo-Fraenkel-Mengenlehre mit dem Auswahlaxiom. Das Paradoxon zeigt, dass die Konzepte von Volumen und Maß in der Mathematik nicht immer so funktionieren, wie wir es in der alltäglichen Geometrie erwarten. Es ist wichtig zu beachten, dass das Paradoxon in der realen Welt nicht anwendbar ist, da die physikalischen Objekte nicht die Eigenschaften haben, die in der abstrakten Mathematik angenommen werden.

Elektronenbandstruktur

Die Elektronenbandstruktur beschreibt die erlaubten und verbotenen Energieniveaus von Elektronen in einem Festkörper. In einem Kristall sind die Elektronen nicht lokalisiert, sondern bewegen sich in einem Periodensystem von Potentialen, was zu einer diskreten Energieaufteilung führt. Die Bandstruktur ist entscheidend für das Verständnis von elektrischen, optischen und thermischen Eigenschaften von Materialien.

Ein Material kann in drei Hauptkategorien eingeteilt werden, basierend auf seiner Bandstruktur:

  1. Leiter: Hier gibt es eine Überlappung zwischen dem Valenzband und dem Leitungsband, was den freien Fluss von Elektronen ermöglicht.
  2. Halbleiter: Diese besitzen eine kleine Bandlücke (EgE_gEg​), die es Elektronen erlaubt, bei ausreichender Energie (z.B. durch Temperatur oder Licht) ins Leitungsband zu springen.
  3. Isolatoren: Sie haben eine große Bandlücke, die eine Bewegung der Elektronen zwischen den Bändern stark einschränkt.

Die mathematische Beschreibung der Bandstruktur erfolgt häufig durch die Bloch-Theorie, die zeigt, wie sich die Energie eines Elektrons in Abhängigkeit von seinem Wellenvektor kkk verändert.

Synthesebio-Logikschaltungen

Synthetic Biology Circuits sind künstlich entworfene genetische Schaltungen, die es ermöglichen, biologische Systeme gezielt zu steuern und zu modifizieren. Diese Schaltungen bestehen aus verschiedenen genetischen Elementen wie Promotoren, Genen und Regulatoren, die so kombiniert werden, dass sie spezifische Funktionen ausführen, ähnlich wie elektronische Schaltkreise in der Technik. Ein Beispiel für eine Anwendung ist die Entwicklung von Mikroben, die in der Lage sind, Biokraftstoffe oder Medikamente zu produzieren, indem sie auf Umweltbedingungen reagieren.

Die Verwendung von Standardbausteinen, wie den sogenannten BioBricks, erleichtert das Design und die Implementierung dieser Schaltungen, da sie modular aufgebaut sind und in unterschiedlichen Kombinationen eingesetzt werden können. Durch die Kombination von Systemen aus verschiedenen Organismen können Forscher neue Funktionen und Eigenschaften schaffen, die in der Natur nicht vorkommen. Die Möglichkeiten sind vielfältig und reichen von der Verbesserung der Nahrungsmittelproduktion bis zur Entwicklung neuer therapeutischer Ansätze in der Medizin.

Einzelzell-Transkriptomik

Single-Cell Transcriptomics ist eine leistungsstarke Technologie, die es ermöglicht, die Genexpression auf der Ebene einzelner Zellen zu analysieren. Diese Methode unterscheidet sich von traditionellen Ansätzen, bei denen die RNA von Tausenden oder Millionen von Zellen gemischt wird, was zu einem Verlust von Informationen über die Heterogenität innerhalb einer Zellpopulation führt. Mit Single-Cell Transcriptomics können Forscher einzelne Zellen isolieren und deren RNA sequenzieren, um ein detailliertes Profil der Genexpression zu erstellen. Dies ermöglicht es, biologische Prozesse besser zu verstehen, wie z.B. Zellentwicklung, Reaktionen auf Umwelteinflüsse oder Krankheitsmechanismen. Zu den häufigsten Anwendungen gehören die Erforschung von Tumoren, Immunantworten und Stammzellbiologie. Die gesammelten Daten werden häufig mit komplexen Bioinformatik-Methoden analysiert, um Muster und Unterschiede zwischen den Zellen zu identifizieren.

Genregulationsnetzwerk

Ein Gene Regulatory Network (GRN) ist ein komplexes System von Wechselwirkungen zwischen Genen und den Proteinen, die deren Expression steuern. Diese Netzwerke bestehen aus Transkriptionsfaktoren, die an spezifische DNA-Sequenzen binden und somit die Aktivität von Zielgenen regulieren. Die Interaktionen innerhalb eines GRN sind oft nichtlinear und können sowohl positiv (Aktivierung) als auch negativ (Repression) sein, was zu einer Vielzahl von biologischen Reaktionen führt.

Ein GRN spielt eine entscheidende Rolle während der Entwicklung, der Zellidentität und der Reaktion auf Umweltveränderungen. Um die Dynamik eines GRN zu verstehen, verwenden Wissenschaftler häufig mathematische Modelle, die Differentialgleichungen beinhalten, um die zeitliche Veränderung der Genexpression zu beschreiben. Diese Netzwerke sind nicht nur fundamental für das Verständnis der Genregulation, sondern auch für die Entwicklung neuer Therapien in der Medizin, da Dysfunktionen in diesen Netzwerken zu Krankheiten führen können.

Hyperbolische Funktionen Identitäten

Hyperbolische Funktionen sind mathematische Funktionen, die in der Hyperbolischen Geometrie und vielen Bereichen der Physik und Ingenieurwissenschaften Anwendung finden. Die wichtigsten hyperbolischen Funktionen sind der hyperbolische Sinus, sinh⁡(x)\sinh(x)sinh(x), und der hyperbolische Kosinus, cosh⁡(x)\cosh(x)cosh(x), definiert durch:

sinh⁡(x)=ex−e−x2undcosh⁡(x)=ex+e−x2\sinh(x) = \frac{e^x - e^{-x}}{2} \quad \text{und} \quad \cosh(x) = \frac{e^x + e^{-x}}{2}sinh(x)=2ex−e−x​undcosh(x)=2ex+e−x​

Wichtige Identitäten für hyperbolische Funktionen sind:

  • Pythagoreische Identität: cosh⁡2(x)−sinh⁡2(x)=1\cosh^2(x) - \sinh^2(x) = 1cosh2(x)−sinh2(x)=1
  • Additionstheoreme: sinh⁡(a±b)=sinh⁡(a)cosh⁡(b)±cosh⁡(a)sinh⁡(b)\sinh(a \pm b) = \sinh(a)\cosh(b) \pm \cosh(a)\sinh(b)sinh(a±b)=sinh(a)cosh(b)±cosh(a)sinh(b) und cosh⁡(a±b)=cosh⁡(a)cosh⁡(b)±sinh⁡(a)sinh⁡(b)\cosh(a \pm b) = \cosh(a)\cosh(b) \pm \sinh(a)\sinh(b)cosh(a±b)=cosh(a)cosh(b)±sinh(a)sinh(b)

Diese Identitäten sind von großer Bedeutung, da sie es ermöglichen, komplexe hyperbolische Ausdrücke zu vereinfachen und Probleme in der Analysis und Differentialgleichungen zu lösen.