StudierendeLehrende

Hessian Matrix

Die Hessische Matrix ist eine quadratische Matrix, die die zweiten Ableitungen einer multivariablen Funktion enthält. Sie ist besonders wichtig in der Optimierung und der Differentialgeometrie, da sie Informationen über die Krümmung der Funktion liefert. Für eine Funktion f:Rn→Rf: \mathbb{R}^n \to \mathbb{R}f:Rn→R ist die Hessische Matrix definiert als:

H(f)=[∂2f∂x12∂2f∂x1∂x2⋯∂2f∂x1∂xn∂2f∂x2∂x1∂2f∂x22⋯∂2f∂x2∂xn⋮⋮⋱⋮∂2f∂xn∂x1∂2f∂xn∂x2⋯∂2f∂xn2]H(f) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix} H(f)=​∂x12​∂2f​∂x2​∂x1​∂2f​⋮∂xn​∂x1​∂2f​​∂x1​∂x2​∂2f​∂x22​∂2f​⋮∂xn​∂x2​∂2f​​⋯⋯⋱⋯​∂x1​∂xn​∂2f​∂x2​∂xn​∂2f​⋮∂xn2​∂2f​​​

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Netzwerkeffekte

Network Effects beziehen sich auf den Nutzen, den ein Produkt oder Dienstleistungsangebot erhält, wenn die Anzahl der Nutzer steigt. Bei positiven Network Effects erhöht sich der Wert eines Produkts für alle Nutzer, je mehr Menschen es verwenden; ein klassisches Beispiel ist das Telefon: Je mehr Personen ein Telefon besitzen, desto wertvoller wird es für jeden Einzelnen. Im Gegensatz dazu gibt es auch negative Network Effects, bei denen die Qualität oder der Nutzen eines Dienstes abnimmt, wenn zu viele Nutzer gleichzeitig darauf zugreifen, wie es bei überlasteten Netzwerken der Fall sein kann. Diese Effekte sind entscheidend für die Gestaltung von Geschäftsmodellen in der digitalen Wirtschaft und beeinflussen die Wettbewerbssituation erheblich. Um von Network Effects zu profitieren, müssen Unternehmen oft strategisch wachsen und eine kritische Masse an Nutzern erreichen, um den Wert ihres Angebots exponentiell zu steigern.

Kapitalwertmodell

Das Capital Asset Pricing Model (CAPM) ist ein fundamentales Modell in der Finanzwirtschaft, das den Zusammenhang zwischen dem Risiko und der erwarteten Rendite eines Vermögenswerts beschreibt. Es basiert auf der Annahme, dass Investoren eine Risiko-Rendite-Prämie verlangen, um das Risiko von Anlageinvestitionen zu kompensieren. Das Modell lässt sich mathematisch durch die folgende Gleichung darstellen:

E(Ri)=Rf+βi(E(Rm)−Rf)E(R_i) = R_f + \beta_i (E(R_m) - R_f)E(Ri​)=Rf​+βi​(E(Rm​)−Rf​)

Hierbei steht E(Ri)E(R_i)E(Ri​) für die erwartete Rendite des Vermögenswerts, RfR_fRf​ für den risikofreien Zinssatz, βi\beta_iβi​ ist das Maß für das systematische Risiko des Vermögenswerts im Vergleich zum Markt und E(Rm)E(R_m)E(Rm​) ist die erwartete Rendite des Marktes. Das CAPM ist besonders nützlich für die Bewertung von Aktien und die Portfolio-Optimierung, da es Investoren hilft, das Risiko eines Vermögenswerts im Kontext des gesamten Marktes zu verstehen. Es ist jedoch wichtig zu beachten, dass das Modell auf bestimmten Annahmen basiert, die in der Praxis nicht immer zutreffen, wie z.B. die Annahme effizienter Märkte.

Optimalsteuerung Pontryagin

Die Pontryagin-Maximalprinzip ist ein fundamentales Konzept in der optimalen Steuerungstheorie, das von dem Mathematiker Lev Pontryagin in den 1950er Jahren entwickelt wurde. Es bietet eine Methode zur Bestimmung der optimalen Steuerung einer dynamischen Systembeschreibung, um ein bestimmtes Ziel zu erreichen, wie z.B. die Minimierung von Kosten oder die Maximierung eines Ertrags. Das Prinzip basiert auf der Formulierung eines sogenannten Hamiltonian HHH, der die Systemdynamik und die Zielfunktion kombiniert.

Der Grundgedanke des Prinzips ist, dass die optimale Steuerung u∗(t)u^*(t)u∗(t) die notwendigen Bedingungen erfüllt, um den Hamiltonian zu maximieren. Mathematisch wird dies durch die Bedingung ausgedrückt:

H(x(t),u(t),λ(t))=max⁡uH(x(t),u,λ(t))H(x(t), u(t), \lambda(t)) = \max_{u} H(x(t), u, \lambda(t))H(x(t),u(t),λ(t))=umax​H(x(t),u,λ(t))

Hierbei sind x(t)x(t)x(t) die Zustandsvariablen, u(t)u(t)u(t) die Steuerungsvariablen, und λ(t)\lambda(t)λ(t) die adjungierten Variablen. Das Prinzip liefert auch eine Reihe von Differentialgleichungen, die die Dynamik der Zustands- und adjungierten Variablen beschreiben, sowie die Bedingungen für die Endpunkte. Somit ist das Pontryagin-Maximalprinzip ein

Kalina-Zyklus

Der Kalina Cycle ist ein innovativer thermodynamischer Kreislauf, der zur Energieerzeugung aus Wärmequellen, wie beispielsweise industriellen Abwärme oder geothermischer Energie, eingesetzt wird. Im Gegensatz zu herkömmlichen Dampfkraftwerken nutzt der Kalina Cycle eine Mischung aus Wasser und Ammoniak als Arbeitsmedium, was eine höhere Effizienz und bessere Anpassungsfähigkeit an verschiedene Temperaturbereiche ermöglicht. Durch die Variation der Zusammensetzung des Arbeitsmediums kann die Verdampfungs- und Kondensationskurve optimiert werden, was zu einem verbesserten thermischen Wirkungsgrad führt.

Ein zentrales Merkmal des Kalina Cycles ist die Fähigkeit, bei niedrigen Temperaturen zu arbeiten, was ihn besonders für die Nutzung von Abwärme in der Industrie attraktiv macht. In der Praxis kann die Effizienz des Kalina Cycles bis zu 20-30% über der von traditionellen Dampfkraftwerken liegen, was ihn zu einer vielversprechenden Technologie für die Zukunft der erneuerbaren Energien macht.

Lieferkettenoptimierung

Die Supply Chain Optimization (Lieferkettenoptimierung) bezieht sich auf den Prozess der Verbesserung der Effizienz und Effektivität aller Aktivitäten, die in der Lieferkette eines Unternehmens stattfinden. Ziel ist es, die Gesamtkosten zu minimieren und gleichzeitig die Servicequalität zu maximieren. Dies umfasst verschiedene Aspekte wie die Planung, Beschaffung, Produktion, Lagerung und Distribution von Waren und Dienstleistungen.

Ein zentraler Bestandteil der Lieferkettenoptimierung ist die Analyse und Gestaltung von Flussdiagrammen, um Engpässe oder Überkapazitäten zu identifizieren. Hierbei kommen häufig mathematische Modelle und Algorithmen zum Einsatz, um Entscheidungsprozesse zu unterstützen. Beispielsweise kann die Optimierung des Bestandsniveaus mit der Formel:

EOQ=2DSH\text{EOQ} = \sqrt{\frac{2DS}{H}}EOQ=H2DS​​

beschrieben werden, wobei DDD die Nachfrage, SSS die Bestellkosten und HHH die Lagerhaltungskosten sind. Durch effektive Strategien zur Optimierung der Lieferkette können Unternehmen nicht nur Kosten sparen, sondern auch ihre Reaktionsfähigkeit auf Marktveränderungen erhöhen.

Poynting-Vektor

Der Poynting-Vektor ist ein fundamentales Konzept in der Elektrodynamik, das die Energieflussdichte eines elektromagnetischen Feldes beschreibt. Er wird durch die Formel

S=E×H\mathbf{S} = \mathbf{E} \times \mathbf{H}S=E×H

definiert, wobei E\mathbf{E}E das elektrische Feld und H\mathbf{H}H das magnetische Feld ist. Der Poynting-Vektor gibt die Richtung und die Intensität des Energieflusses an, der durch das elektromagnetische Feld transportiert wird. Die Einheit des Poynting-Vektors ist Watt pro Quadratmeter (W/m²), was die Energiemenge pro Zeit und Fläche angibt, die durch das Feld übertragen wird. In praktischen Anwendungen ist der Poynting-Vektor entscheidend für das Verständnis von Phänomenen wie der Strahlung von Antennen oder der Übertragung von Energie in Wellenleitern.