Np-Completeness ist ein Konzept aus der theoretischen Informatik, das sich mit der Komplexität von Entscheidungsproblemen beschäftigt. Ein Problem gehört zur Klasse NP (nicht-deterministisch polynomial), wenn es möglich ist, eine Lösung für das Problem in polynomialer Zeit zu überprüfen. Ein Problem ist NP-vollständig, wenn es in NP ist und jedes andere Problem in NP in polynomialer Zeit auf dieses Problem reduziert werden kann. Dies bedeutet, dass die NP-vollständigen Probleme die "schwierigsten" Probleme in NP sind, da, wenn man eines dieser Probleme effizient lösen könnte, man auch alle anderen Probleme in NP effizient lösen könnte. Beispiele für NP-vollständige Probleme sind das Travelling Salesman Problem und das Knapsack Problem. Die Frage, ob P = NP ist, bleibt eines der größten offenen Probleme in der Informatik.
Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.