StudierendeLehrende

Knuth-Morris-Pratt Preprocessing

Der Knuth-Morris-Pratt (KMP) Algorithmus ist ein effizienter Algorithmus zur Mustererkennung in Strings, der eine Vorverarbeitung des Musters nutzt, um die Suche zu optimieren. Während der Preprocessing-Phase wird ein Prefix-Suffix Array (häufig als lps\text{lps}lps bezeichnet) erstellt, das für jedes Zeichen im Muster die Länge des längsten Präfixes angibt, das gleichzeitig auch ein Suffix ist. Diese Informationen ermöglichen es, bei einer Mismatch-Situation im Suchprozess das Muster nicht vollständig neu auszurichten, sondern an einer geeigneten Position weiterzumachen, was die Effizienz erheblich steigert. Der Algorithmus hat eine Laufzeit von O(n+m)O(n + m)O(n+m), wobei nnn die Länge des Textes und mmm die Länge des Musters ist. Durch die geschickte Nutzung des lps\text{lps}lps-Arrays wird die Anzahl der Vergleiche minimiert und die Suche somit schneller und effizienter gestaltet.

Weitere verwandte Begriffe

contact us

Zeit zu lernen

Starte dein personalisiertes Lernelebnis mit acemate. Melde dich kostenlos an und finde Zusammenfassungen und Altklausuren für deine Universität.

logoVerwandle jedes Dokument in ein interaktives Lernerlebnis.
Antong Yin

Antong Yin

Co-Founder & CEO

Jan Tiegges

Jan Tiegges

Co-Founder & CTO

Paul Herman

Paul Herman

Co-Founder & CPO

© 2025 acemate UG (haftungsbeschränkt)  |   Nutzungsbedingungen  |   Datenschutzerklärung  |   Impressum  |   Jobs   |  
iconlogo
Einloggen

Casimir-Druck

Der Casimir-Druck ist ein physikalisches Phänomen, das aus quantenmechanischen Effekten resultiert, wenn zwei unendlich große, parallele Platten im Vakuum sehr nah beieinander platziert werden. Diese Platten beeinflussen die Quantenfluktuationen des elektromagnetischen Feldes zwischen ihnen, was zu einer Reduktion der verfügbaren Energiestufen führt. Dadurch entsteht eine netto anziehende Kraft, die die Platten aufeinander zu drückt. Diese Kraft kann quantitativ beschrieben werden durch die Formel:

F=−π2ℏc240d4F = -\frac{\pi^2 \hbar c}{240 d^4}F=−240d4π2ℏc​

wobei FFF der Casimir-Druck ist, ℏ\hbarℏ das reduzierte Plancksche Wirkungsquantum, ccc die Lichtgeschwindigkeit und ddd der Abstand zwischen den Platten. Der Casimir-Druck ist nicht nur von theoretischem Interesse, sondern hat auch Anwendungen in der Nanotechnologie und der Materialwissenschaft, da er die Wechselwirkungen zwischen nanoskaligen Objekten erheblich beeinflussen kann.

Schottky-Barriere-Diode

Die Schottky Barrier Diode ist eine spezielle Art von Halbleiterdiode, die durch die Verbindung eines Metalls mit einem Halbleitermaterial, üblicherweise n-dotiertem Silizium, entsteht. Diese Diode zeichnet sich durch eine geringe Vorwärtsspannung und eine schnelle Schaltgeschwindigkeit aus, was sie ideal für Anwendungen in Hochfrequenz- und Leistungselektronik macht. Die Schottky-Diode hat im Vergleich zu herkömmlichen pn-Übergangs-Dioden einen niedrigeren Schaltdurchlassverlust, was sie besonders effizient macht.

Die charakteristische Schottky-Barriere, die sich an der Grenzfläche zwischen Metall und Halbleiter bildet, bestimmt die Höhe der Durchlassspannung, die typischerweise zwischen 0,2 V und 0,4 V liegt. In mathematischer Form kann die Schottky-Barrierehöhe ΦB\Phi_BΦB​ durch die Beziehung

ΦB=kTqln⁡(I0I+1)\Phi_B = \frac{kT}{q} \ln\left(\frac{I_0}{I} + 1\right)ΦB​=qkT​ln(II0​​+1)

beschrieben werden, wobei kkk die Boltzmann-Konstante, TTT die Temperatur in Kelvin, qqq die Elementarladung, I0I_0I0​ der Sättigungsstrom und $I\

Strukturelle Bioinformatik-Modellierung

Structural Bioinformatics Modeling ist ein interdisziplinäres Forschungsfeld, das sich mit der Analyse und Vorhersage der dreidimensionalen Strukturen biologischer Makromoleküle, wie Proteinen und Nukleinsäuren, befasst. Dabei werden computergestützte Methoden verwendet, um die räumliche Anordnung der Atome in diesen Molekülen zu modellieren und zu analysieren. Ein zentrales Ziel ist es, die Beziehung zwischen der Struktur eines Moleküls und seiner Funktion zu verstehen, was für die Entwicklung von Medikamenten und die biotechnologische Anwendung von großer Bedeutung ist.

Zu den häufig verwendeten Techniken gehören:

  • Molekulare Dynamik-Simulationen
  • Homologiemodellierung
  • Protein-Protein-Interaktionsanalysen

Die Ergebnisse dieser Modelle liefern wertvolle Einblicke in die Mechanismen biologischer Prozesse und unterstützen die Identifizierung potenzieller therapeutischer Zielstrukturen.

Fibonacci-Haufenoperationen

Ein Fibonacci-Heap ist eine spezielle Art von Datenstruktur, die eine Sammlung von Heap-basierten Bäumen verwendet, um eine effiziente Umsetzung von Prioritätswarteschlangen zu ermöglichen. Die Hauptoperationen eines Fibonacci-Heaps sind Einfügen, Verschmelzen, Minimum Finden, Löschen und Decrease-Key.

  • Einfügen: Ein neuer Knoten wird erstellt und in die Wurzelliste des Heaps eingefügt, was in amortisierter Zeit von O(1)O(1)O(1) erfolgt.
  • Minimum Finden: Der Zugriff auf das Minimum geschieht ebenfalls in O(1)O(1)O(1), da der Fibonacci-Heap eine Zeigerreferenz auf das Minimum behält.
  • Decrease-Key: Um den Wert eines Knotens zu verringern, wird der Knoten möglicherweise aus seinem aktuellen Baum entfernt und in einen neuen Baum eingefügt, was in amortisierter Zeit von O(1)O(1)O(1) geschieht.
  • Löschen: Diese Operation erfordert zunächst die Durchführung einer Decrease-Key-Operation, gefolgt von einer Löschung des Minimums, und hat eine amortisierte Zeitkomplexität von O(log⁡n)O(\log n)O(logn).

Durch die Verwendung dieser Operationen kann der Fibonacci-Heap eine effiziente Handhabung von Prioritätswarteschlangen ermöglichen, besonders in Algorithmen wie Dijkstra

Bode-Gewinnreserve

Der Bode Gain Margin ist ein wichtiger Parameter in der Regelungstechnik, der die Stabilität eines Systems beschreibt. Er gibt an, wie viel Gewinn (Gain) ein System zusätzlich haben kann, bevor es instabil wird. Der Gain Margin wird in der Bode-Diagramm-Analyse ermittelt, wo die Frequenzantwort eines Systems grafisch dargestellt wird. Er wird definiert als der Unterschied zwischen dem aktuellen Verstärkungswert und dem Verstärkungswert, bei dem die Phase des Systems 180 Grad erreicht. Mathematisch kann der Gain Margin als folgt dargestellt werden:

Gain Margin=20⋅log⁡10(1K)\text{Gain Margin} = 20 \cdot \log_{10}\left(\frac{1}{K}\right)Gain Margin=20⋅log10​(K1​)

wobei KKK der Verstärkungswert ist, bei dem die Phase -180 Grad erreicht. Ein positiver Gain Margin zeigt an, dass das System stabil ist, während ein negativer Gain Margin auf eine instabile Rückkopplung hinweist.

Devisenhandel

Der Foreign Exchange (auch bekannt als Forex oder Devisenmarkt) ist der globale Markt für den Handel mit Währungen. Hierbei werden Währungen zu einem bestimmten Kurs gegeneinander getauscht, wobei dieser Kurs durch Angebot und Nachfrage auf dem Markt bestimmt wird. Der Forex-Markt ist der größte und liquideste Finanzmarkt der Welt, mit einem täglichen Handelsvolumen von über 6 Billionen US-Dollar. Die Hauptakteure sind Banken, Finanzinstitutionen, Unternehmen und private Händler, die sowohl kurzfristige als auch langfristige Handelsstrategien verfolgen. Wichtig zu beachten ist, dass Wechselkurse von verschiedenen Faktoren beeinflusst werden, darunter wirtschaftliche Indikatoren, politische Ereignisse und Marktpsychologie. Der Handel erfolgt oft in Form von Währungspaaren, wie zum Beispiel EUR/USD, wobei der Kurs angibt, wie viel US-Dollar benötigt werden, um einen Euro zu kaufen.